гических проблем агропромышленного комплекса Ростовской области, обеспечивающих продовольственную независимость и безопасность.

Список литературы

1. Холодов, О.А. Современное состояние сельскохозяйственного производства региона / О.А. Холодов // Проблемы функционирования и развития экономики регионов Северного Кавказа и Ю Φ О: вызовы и решения. — Ч. 2. — Краснодар, 2010. — 608 с.

2. Ковалёва, Н.Н. Концептуально-методические основы государственной поддержки и регулирования АПК / Н.Н. Ковалёва // Интеграция науки, образования и бизнеса для обеспечения продовольственной безопасности Российской Федерации: материалы Международной научно-практической конференции, 2—4 февраля 2010 г. — Пос. Персиановский: Донской ГАУ, 2010. — 350 с

УДК 519.87

В.А. Абаев, канд. экон. наук

Московский государственный агроинженерный университет имени В.П. Горячкина

МЕТОДИЧЕСКИЕ ПОДХОДЫ К НЕЧЕТКО-МНОЖЕСТВЕННОЙ ОЦЕНКЕ ЭФФЕКТИВНОСТИ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ

Вопубликованных ранее работах автор рассматривал инструментарий исследования нелинейных динамических систем — марковские цепи, нейронные сети. Он затрагивал вопросы и проблемы, связанные с экспертными оценками и формированием групп экспертов. Все это способствовало изучению проблематики нечетких систем.

Данный методический подход применим для решения трудноформализуемых задач в условиях нечеткой и неполной информации с применением

специальных разделов теории нечетких множеств: нечетких чисел и нечеткой арифметики [1].

Нечеткие множества могут применяться при моделировании систем, для которых зависимость между входными и выходными сигналами известна и представима в виде традиционной математической модели y = f(X), а входные параметры модели не поддаются точному измерению и доступны только для приближенной оценки. Например, $x_1 =$ «примерно 5», x_2 = «около 6», x_3 = «приблизительно 7», x_4 = «точно 9» и т. д., т. е. входной параметр имеет лингвистическую неопределенность (возможность), которая не является тождественной стохастической неопределенности (вероятность) [2].

Например, значение «примерно 5» представляет собой область определения наиболее возможного значения 5 и наименее возможных значений 3

и 7. Значение «около 6» представляет собой область определения наиболее возможного значения 6 и наименее возможных значений 5,5 и 9. Значение «примерно 7» представляет собой область определения наиболее возможного значения 7 и наименее возможных значений 4 и 7,7. Нечеткое представление четкого числа 9 представлено синглтоном (рис. 1). В этом случае значение выхода системы у будет получено в форме нечеткого числа.

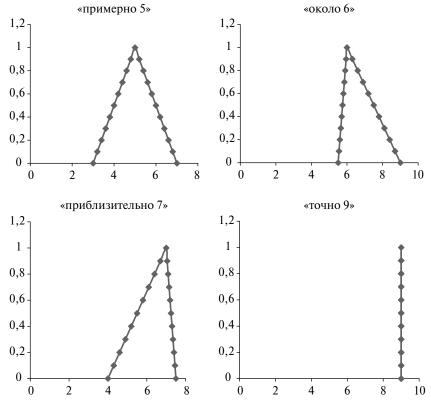


Рис. 1. Примеры нечетких чисел

Таблица 1
Правила выполнения арифметических операций для положительных нечетких чисел

Арифметическая операция	<u>y</u>	
$\tilde{y} = \tilde{x}_1 + \tilde{x}_2$	$\underline{x}_1 + \underline{x}_2$	$-\frac{1}{x_1} + \frac{1}{x_2}$
$\tilde{y} = \tilde{x}_1 - \tilde{x}_2$	$\underline{x}_1 - x_2$	$\overset{-}{x_1} - \underline{x}_2$
$\tilde{y} = \tilde{x}_1 \times \tilde{x}_2$	$\underline{x}_1 \times \underline{x}_2$	$\overline{x}_1 \times \overline{x}_2$
$\tilde{y} = \tilde{x}_1/\tilde{x}_2$	$\underline{x}_1/\overline{x}_2$	$\bar{x}_1/\underline{x}_2$
$\tilde{y} = \tilde{x}_1^n$	\underline{x}_1^n	$\frac{-n}{x_1}$
$\tilde{y} = \sqrt[n]{\tilde{x}_1} = \tilde{x}_1^{\frac{1}{n}}$	$\underline{x}_{1}^{\frac{1}{n}}$	$\frac{-\frac{1}{n}}{x_1^n}$

Если модель задана в виде математического выражения, содержащего математические операции (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня), то должны быть определены методы выполнения этих операций.

В нечеткой арифметике базовые математические операции над нечеткими числами представляют собой обобщение соответствующих операций над обычными числами (табл. 1) [3].

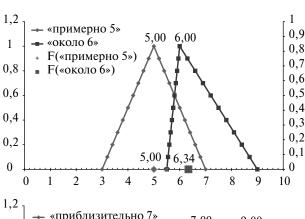
Данный метод позволяет вводить в традиционную математическую модель системы нечеткой
оценки входных значений, которые формирует человек (группа экспертов) на основе своего восприятия проблемы, накопленных знаний и интуиции
(проблеме оценки согласованности мнений экспертов были посвящены прошлые статьи автора).
Кроме того, на основе нечеткой арифметики можно создавать гибридные модели, состоящие из четких и нечетких блоков, при этом четкие элементы
модели могут использоваться для обработки нечеткой информации, выдаваемой соответствующими
нечеткими элементами.

Введем функцию, облегчающую сравнение нечеткого множества A единичного интервала, функцию упорядочения. Эта функция помогает преодолеть неразумное многообразие объектов, провести дефаззификацию нечеткого множества. В данном случае функция упорядочения представляет собой интеграл объединения уровневых α множеств и является интегральной, точечной оценкой нечеткого множества, позволяющей сравнивать нечеткие множества между собой независимо от вида функции принадлежности и мощности.

V— является подмножеством уровня α : $V = \{x_1, x_2, ..., x_n\}$. Определим M(V), как среднее значение элементов V, т. е.

$$M(V) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

В таком случае функция упорядочения нечеткого множества с максимальной степенью принадлежности $\alpha_{max}=1$ будет иметь вид:


$$F(A) = \int_{0}^{\alpha_{\max}} M(V) d\alpha.$$

Функция упорядочения имеет ряд свойств. Она равна ядру нечеткого множества при синглтонной функции принадлежности, как функции принадлежности четкого числа и симметричных треугольных функций принадлежности и смещается в сторону больших или меньших значений нечеткого множества (рис. 2). Для приведенных в качестве примера нечетких чисел функция упорядоченности составила F(«примерно 5») = 5; F(«около 6») = 6,34; F(«приблизительно 7») = 6,66; F(«точно 9») = 9. Сравнение значений функций упорядочения, определение их разности или отношений позволяет определить степень подобия и различия нечетких множеств.

Применение нечетких множеств в построении математических моделей экономических процессов покажем на примере расчета NPV. Проведем вычислительный эксперимент. Предположим, что группа экспертов дала заключение о возможных параметрах вариантов инвестиционных проектов, рассчитанных на два года (табл. 2).

В литературе по инвестиционному анализу хорошо известна формула чистой современной ценности инвестиций (NPV — Net Present Value). Возьмем один важный частный случай оценки NPV, который и будем использовать в дальнейшем рассмотрении:

• все инвестиционные поступления приходятся на начало инвестиционного процесса;

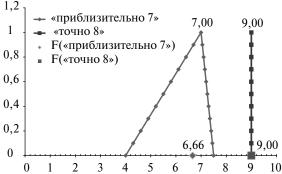


Рис. 2. Свойства функции упорядочения

Исходные данные для нечетко-множественной оценки эффективности вариантов инвестиций

Показатели		Вариант 1 (NPV1)			Вариант 2 (NPV2)		
		Нижняя граница наименее возможного значения	Наиболее возможное значение	Верхняя гра- ница наиме- нее возможно- го значения	Нижняя граница наименее возможного значения	Наиболее возможное значение	Верхняя граница наименее возможного значения
Капита	ловложения, тыс. р.	700	1200	1700	900	1000	1100
1 год	Доходы, тыс. р.	650	700	2500	500	700	900
	Затраты, тыс. р.	0	400	500	100	500	1100
2 год	Доходы, тыс. р.	1550	1600	2500	1000	1600	2000
	Затраты, тыс. р.	500	1000	1100	200	800	1500
Ставка	дисконта, %	10	20	35	10	20	35
Остаточная стоимость ОПФ,							
тыс. р.		900	1000	1200	800	1000	1200

• оценка ликвидационной стоимости проекта производится post factum, по истечении срока жизни проекта.

Тогда соотношение для NPV имеет следующий вид:

NPV =
$$-I + \sum_{i=1}^{N} \frac{\Delta V_i}{(1+r)^i} + \frac{C}{(1+r)^N}$$
,

где I— стартовый объем инвестиций; N— число плановых интервалов (периодов) инвестиционного процесса, соответствующих сроку жизни проекта; ΔV_i — оборотное сальдо поступлений и платежей в i-м периоде; r— ставка дисконтирования, выбранная для проекта с учетом оценок ожидаемой стоимости, используемого в проекте капитала (например, ожидаемая ставка по долгосрочным кредитам), C— ликвидационная стоимость чистых активов, сложившаяся в ходе инвестиционного процесса (в том числе остаточная стоимость основных средств на балансе предприятия) [3].

Используя программный комплекс Matlab, определим нечеткое множество значений NPV для заданных вариантов инвестиций. Также вычислим

точечную интегральную оценку нечеткого множества NPV (функцию упорядочения — F(NPV)). Результаты расчетов в графической интерпретации представлены на рис. 3.

Для сравнения приведем расчеты выполнение с помощью обычных чисел, соответствующих наиболее возможным значениям:

$$NPV1 = -1200 + \frac{700 - 400}{(1 + 0.2)^{1}} + \frac{1600 - 1000}{(1 + 0.2)^{2}} + \frac{1000}{(1 + 0.2)^{2}} = 161,11 \text{ тыс. p.}$$

$$NPV2 = -1000 + \frac{700 - 500}{(1 + 0.2)^{1}} + \frac{1600 - 800}{(1 + 0.2)^{2}} + \frac{1000}{(1 + 0.2)^{2}} = 416,67 \text{ тыс. p.}$$

Традиционный расчет NPV показывает преимущество второго варианта инвестирования NPV1 = 161,11 тыс. р., NPV2 = 416,67 тыс. р.,

очевидно, что 416,67 > 161,11, т. е. NPV 1 < NPV2. Но если учесть в модели экономического процесса большее количество данных (использовать в качестве описаний факторов, входящих в модель нечеткие числа), то можно повысить точность моделирования. Повышение точности приводит к снижению риска. Нечетко-множественный методический подход показывает, что показатели NPV составят: NPV1 = 537,30 тыс. р., NPV2 = 390,37 тыс. р., т. е. точечная нечеткая оценка NPV1 > NPV2. Полученный результат очевидно отличается от рассчитанного по традиционной методике и должен оказать решающее влияние на выбор вари-

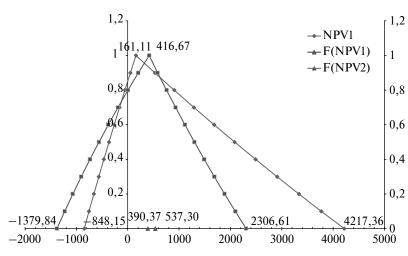


Рис. 3. Графики функций принадлежности нечетких множеств NPV и вычисленные значения функций упорядочения F(NPV)

анта инвестирования лицом принимающим решение

По результатам проделанной работы можно сделать несколько выводов:

- 1. С помощью аппарата нечетких множеств возможно моделировать экономические процессы.
- 2. Для оценки и сравнения нечетких множеств целесообразно использовать разработанный автором показатель функцию упорядочения.
- 3. Нечеткие множества включают в себя больше информации об экономическом процессе или явлении, за счет чего построенная с помощью нечетких множеств модель экономического процесса описывает его более точно.

4. Более точная оценка позволяет снизить риск ошибки в принятии управленческих решений и минимизировать возможные потери.

Список литературы

- 1. Вуколов, Э.А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов Statistica и Excel: учеб. пособие / Э.А. Вуколов. М.: Инфра-М, 2004. 464 с.
- 2. Недосекин, A.O. Нечетко-множественный анализ риска фондовых инвестиций / A.O. Недосекин. СПб.: Типография «Сезам», $2002.-180\,\mathrm{c}$.
- 3. Штовба, С.Д. Проектирование нечетких систем средствами Matlab / С.Д. Штовба. М.: Горячая линия Телеком, 2007.-288 с.

УДК 338.43:620.9.003.13

Н.С. Спиридонов

Московский государственный агроинженерный университет имени В.П. Горячкина

МЕТОДИЧЕСКИЕ ОСНОВЫ РАСЧЕТА УДЕЛЬНЫХ ПРИВЕДЕННЫХ ЗАТРАТ ДЛЯ ПОЛУЧЕНИЯ ЭНЕРГИИ ИЗ ОТХОДОВ РАСТЕНИЕВОДСТВА

Выбор экономически наиболее эффективного варианта применения того или иного проекта основывается на условии выгодности, например, капиталоемкого варианта.

Такой способ является довольно трудоемким, так как альтернативных вариантов бывает много и выполнять эти операции становится очень неудобно. Когда в конце 60-х годов прошлого века решался вопрос о строительстве автомобильного завода в СССР мощностью 660 тыс. автомобилей в год, рассматривалось более 70 вариантов строительства завода в различных точках страны. Парное сравнение при таком объеме вариантов проводить было неудобно и нецелесообразно, так как терялись важные сведения о рейтинге каждого варианта.

Решение данной проблемы было найдено созданием нового критерия сравнительной экономической эффективности, который получил название приведенные затраты:

$$3_{\text{npi}} = 3_{\text{skci}} + E_{\text{H}} K_{\text{i}},$$

где $3_{
m npi}$ — приведенные затраты i-го варианта, р.; $3_{
m sci}$ — эксплуатационные затраты i-го варианта, р.; $K_{
m i}$ — капитальные вложения i-го варианта, р.

В состав данной формулы входит стоимостный показатель «эксплуатационные затраты», который состоит из нескольких статей затрат. Эксплуатационные затраты— сумма издержек производства, они обеспечивают поддержание в нормальном состоянии используемых (эксплуатируемых) систем [1].

Данный показатель включает в себя основные статьи затрат при производстве продукции и фактически является показателем себестоимости.

Эксплуатационные затраты можно представить в виде следующей формулы:

$$3_{\text{\tiny 9KC}} = OT + H_{\text{\tiny 3II}} + A_{\text{\tiny O}} + P_{\text{\tiny TO}} + C_{\text{\tiny 9}} + \Pi,$$

где OT — оплата труда рабочим, р.; $H_{\rm 3II}$ — начисления на заработную плату, р.; $A_{\rm O}$ — амортизация основных фондов, р.; $P_{\rm TO}$ — затраты на ремонт и обслуживание оборудование, р.; $C_{\rm 9}$ — стоимость электроэнергии, р.; Π — прочие затраты, р.

В таблице представлены основные показатели, необходимые для расчета приведенных затрат.

Однако для того чтобы рассчитать приведенные затраты для выбора наиболее эффективного варианта оборудования для сжигания отходов растениеводства и получения тепло- и (или) электроэнергии, недостаточно знать только эти показатели. Работа оборудования по сжиганию отходов растениеводства, например соломы, сопряжена и с другими затратами, которые необходимо учесть при расчете приведенных затрат.

Солома, предназначенная для сжигания, должна храниться в сухих условиях. Поэтому лучше всего хранить солому под крышей, например, в относительно дешевых полевых сараях либо под навесами с большими козырьками, чтобы дождевая вода не попадала на солому, но хранение соломы в закрытых помещениях потребует затрат [2].