МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный аграрный университет – MCXA имени К.А.Тимирязева»

Кафедра «Автоматизации и роботизации технологических процессов имени академика И.Ф. Бородина»

Ю.А. Судник, Е.А. Четвериков, Е.А. Шабаев, В.Н. Беленов

«Электронные компоненты микропроцессорных устройств»

Лабораторный практикум

Содержание	Стр.
1. Тема 1 Исследование цифровых счетчиков импульсов	3
2. Тема 2 Исследование арифметико-логического	
устройства (АЛУ)	17
3. Тема 3 Исследование оперативной памяти и мультиплексной	
организации шины данных	33
4. Тема 4 Исследование оперативного запоминающего устройства и	
мультиплексного способа организации внутренней шины данных	33

Судник Ю.А., Четвериков Е.А., Шабаев Е.А., Беленов В.Н.

«Электронные компоненты микропроцессорных устройств»: Лабораторный практикум / Ю.А. Судник. М.: Изд-во РГАУ-МСХА, 2025. 40 с.

Рецензент Нормов Д.А., и.о. заведующего кафедрой электроснабжения и теплоэнергетики имени академика И.А. Будзко

В методических указаниях «Электронные компоненты микропроцессорных устройств»:» рассмотрены принципы функционирования и структурные особенности ключевых элементов цифровых вычислительных систем: счетчиков, арифметико-логических устройств (АЛУ), оперативной памяти (ОЗУ) и архитектуры микропроцессора. Представлены теоретические основы, методики проведения экспериментов и контрольные вопросы для закрепления материала.

Предназначено для бакалавров, обучающихся по направлению 35.03.06 – «Агроинженерия»

Рекомендовано к изданию учебно-методической комиссией энергетического факультета (протокол № от 2025 г.)

© Судник Ю.А. Четвериков Е.А., Шабаев Е.А., Беленов В.Н., 2025

©ФГБОУ ВПО РГАУ-МСХА им. К.А. Тимирязева, 2025

©Издательство РГАУ-МСХА, 2025

Тема 1 «Исследование цифровых счетчиков импульсов»

I. Цель работы.

Изучить принципы функционирования и исследование характеристик основных типов цифровых счетчиков (суммирующих, вычитающих, реверсивных) на базе триггерных элементов.

II. Задание.

- 1. Исследовать схему суммирующего счётчика с переменным модулем счёта K_C .
 - 2. Исследовать схему вычитающего счётчика.
 - 3. Исследовать схему реверсивного счётчика.

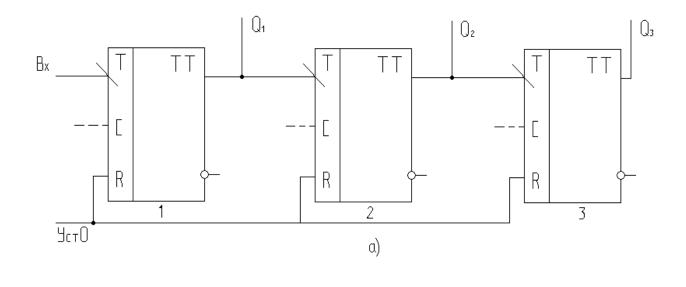
III. Теоретические сведения.

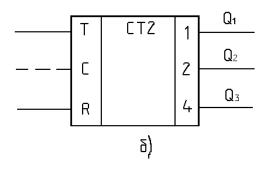
<u>Счётчик импульсов</u> — это последовательное цифровое устройство (ЦУ), обеспечивающее хранение слова информации и выполняющее над этим словом микрооперации счёта. Микрооперация счёта заключается в изменении значения числа 0 в счётчике на ± 1 . Счётчик, в котором выполняется микрооперация счёта C:=C+1, называется суммирующим, а счётчик, реализующий микрооперацию C:=C-1, — вычитающим. Счётчик называется реверсивным, если реализуются обе микрооперации.

Основным параметром счётчика является модуль (коэффициент) счёта K_C , определяемый максимальным числом единичных сигналов, которое может быть сосчитано счётчиком. Счётчик, содержащий п двоичных разрядов, может находиться в состояниях $0, 1, 2, \ldots, 2^{\Pi}$ -1. При поступлении на вход суммирующего счётчика 2^{Π} — ой единицы он переходит из состояния 2^{Π} —1 в состояние 0. Таким образом, п — разрядный суммирующий двоичный счётчик имеет модуль счёта $K_C = 2^{\Pi}$.

Счётчики обычно реализуются на T-триггерах, однако могут использоваться и D-, JK-триггеры.

Классификация счётчиков. В зависимости от направления счёта различаются суммирующие (с прямым счётом), вычитающие (с обратным счётом) и реверсивные (с прямым и обратным счётом) счётчики. По организации схемы переноса различаются счётчики с последовательным, параллельным и параллельно-последовательным переносом.


В зависимости от наличия синхронизации различаются <u>синхронные</u> и <u>асинхронные</u> счётчики. При маркировке счётчика для обозначения его функциональной принадлежности (см. лабораторную работу №1) используются буквы ИЕ. Конструктивно счётчик выполняется в виде совокупности интегральных схем – триггеров, соединённых соответствующим образом, или в виде одной интегральной схемы, содержащей многоразрядный счётчик.


Ниже рассмотрим основные типы счётчиков.

Суммирующие счётчики.

Рассмотрим устройство 3—разрядного суммирующего двоичного асинхронного счётчика. В таком счётчике можно реализовать счётную последовательность от 0 до 2^3 –1 = 7. Последовательность чисел может быть задана совокупностью 3—разрядных двоичных чисел b_3 b_2 b_1 : 000, 001, 010, 011, 100, 101, 110, 111.

Поставим в соответствие каждому разряду b_i числа выход триггера Q_i . В 3-разрядном счётчике с выходами Q_3 Q_2 Q_1 будет реализоваться счётная последовательность от 0 до 7. Схема такого счётчика приведена на рис. 1 а. В этой схеме исходное состояние счётчика устанавливается подачей сигнала оп шине «Уст. 0». Триггеры изменяют своё состояние с окончанием входного сигнала (переключение по срезу - см. лабораторную работу №3), т. е. после перехода от уровня 1 к 0. Работа такого триггера описывается временной диаграммой на рис. 1 в. На рис. 1 б изображён этот же счётчик, но в интегральном исполнении, где CT2 означает двоичный счётчик; выходы 1, 2, 4 означают веса двоичных разрядов ($2^0 = 1$, $2^1 = 2$, $2^2 = 1$), соответствующих выходам Q_1 , Q_2 , Q_3 ; T— счётный вход; R — установка нуля.

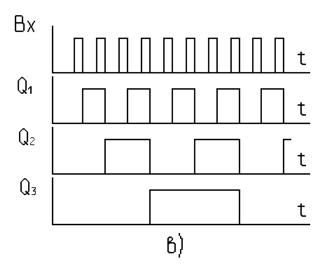


Рис. 1.1. Суммирующий двоичный асинхронный счётчик

Работа счётчика. После подачи сигнала «Уст. 0» счётчик находится в нулевом состоянии. Это соответствует наличию уровня 0 на выходах Q_1 , Q_2 , Q_3 . Дальнейшее изменение состояния счётчика целиком будет зависеть только от входного сигнала (так работает асинхронный счётчик). С приходом первого

сигнала на вход первый триггер переходит в состояние 1 ($Q_I = 1$; $\overline{Q}_1 = 0$) и на его выходе устанавливается уровень 1. Триггеры 2 и 3 продолжают сохранять нулевое состояние, поскольку сигнал на их входах не изменяется с уровня 1 на уровень 0, т. е. $Q_2 = 0$, $Q_3 = 0$. С приходом второго сигнала триггер 1 переходит из состояния 1 в состояние 0. В момент изменения уровня на его выходе с $Q_I = 1$ на уровень $Q_I = 0$ триггер 2 переходит в состояние 1 и на его выходе устанавливается уровень $Q_2 = 1$. Состояние триггера 3 остаётся неизменным. Этот триггер перейдёт в состояние 1 лишь при поступлении на счётный вход триггера 1 четвёртого по счёту сигнала. При этом триггер 1 перейдёт в состояние 0. Переход от состояния 0 к состоянию 0 вызовет изменение уровней от 1 к 0 на счётном входе триггера 2.

В результате триггер 2 также перейдёт из состояния 1 в состояние 0. Такой переход повлечёт за собой изменение уровня от 1 к 0 на счётном входе триггера 3. В результате на выходе Q_3 установится уровень 1. При этом выходах Q_1 и Q_2 будут уровни 0. Следовательно, в счётчике будет зафиксировано числю 4 в двоичном представлении ($4_{10} = 100_2$). Это соответствует фиксации момента поступления четвёртого сигнала. К моменту поступления восьмого по счёту сигнала на выходах триггеров Q_1 , Q_2 , Q_3 будет установлен уровень 1. Поступление восьмого сигнала на счётный вход триггера 1 вызовет изменение его состояния с 1 на 0. В свою очередь, изменение состояния триггера 1 вызовет изменение состояния триггера 2, что в свою очередь приведёт к изменению состояния триггера 3. В результате все триггеры счётчика перейдут в состояние 0. Счётчик будет подготовлен к счёту новой последовательности из восьми сигналов.

Закон функционирования счётчика можно представить в виде таблицы состояний триггеров.

Состояние триггеров

Nº	Положения триггеров			Nº	Положения триггеров		
сост.	Q ₁	Q ₂	Q ₃	сост.	Q ₁	Q_2	Q ₃
0 1 2 3 4	0 0 0 0 1	0 0 1 1 0	0 1 0 1 0	5 6 7 8	1 1 1 0	0 1 1 0	1 0 1 0

Работа рассмотренного счётчика происходит оп модулю $K_C = 2^{\Pi}$, где п—число триггеров. На практике возникает потребность в построении счётчиков по произвольному модулю K_C с числом двоичных разрядов, выбираемых исходя из условия:

$$2^{\Pi} \le K_C < 2^{\Pi+1}$$

Это вызывает необходимость исключения лишних состояний в счётчике, что делается с помощью разнообразных способов. Наибольшее распространение получили способ принудительной установки в состояние «0» всех разрядов двоичного счётчика и способ принудительного насчёта [2].

По первому способу реализуются счётчики с естественным порядком счёта, по второму - счётчики с принудительным насчётом. В счётчиках с <u>естественным порядком счёта</u> порядок счёта такой же, как в двоичных счётчиках. Отличие заключается в том, что путём введения дополнительных связей счёт заканчивается раньше значения 2^{Π} . Так, у счётчика с $K_C = 10$ переход разрядов в состояние «0» будет происходить с приходом не 16—го, а 10—го счётного импульса («система 16—6»). Пример построения счётчика с естественным порядком счёта при $K_C = 10$ приведён на рис. 1.2.

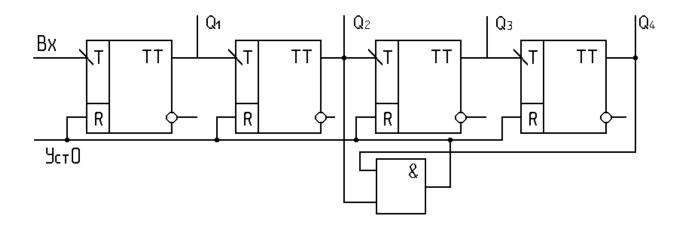


Рис. 1.2. Счётчик с естественным порядком счёта при $K_C = 10$

До наступления 10-го счётного импульса последовательность включения триггеров та же, что и у двоичного счётчика (табл. 2). С приходом 10го импульса срабатывает схема И, происходит сброс всех триггеров в «0» и счёт происходит сначала.

Таблица 1.2 Последовательность включения триггеров Положение триггеров

Состояния	TIONOMOTINO TENTIOPOS
RINHROTOGO	Q ₄ Q ₃ Q ₂ Q ₁
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1 0 0 0
9	1 0 0 1
10	0 0 0 0

В счётчиках с принудительным насчётом исключение избыточных состояний двоичного счётчика достигается путём принудительной установки отдельных его разрядов в состояние 1 в процессе счёта. Принудительный насчёт осуществляется введением обратных связей со старших разрядов счётчика в младшие, благодаря чему соответствующие младшие разряды вне очереди переключаются в состояние 1.

Вследствие принудительного насчёта показания рассматриваемых счётчиков не соответствуют двоичной системе счисления. По этой причине их относят к классу счётчиков с произвольным порядком счёта.

Способ реализации счётчиков с принудительным насчётом в процессе счёта покажем на примере структурной схемы счётчика с $K_C = 10$ (рис. 3).

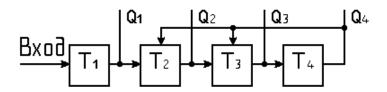


Рис. 1.3. Счётчик с принудительным насчётом

Схема состоит из четырёх триггеров и цепей обратных связей с выхода четвёртого разряда на запись «1» во второй и третий разряды. До записи «1» в четвёртый разряд, т. е. до прихода восьмого счётного импульса, счётчик работает как двоичный (табл. 3). С приходом восьмого счётного импульса «1» записывается в триггер T_4 с осуществлением обратной связи на запись «1» во вторую и третью ячейки. Таким образом, после восьмого счётного импульса, вследствие принудительного насчёта, в счётчик записывается число 8+6=14. Девятый счётный импульс устанавливает «1» в триггер T_1 , а 10-й счётный импульс возвращает счётчик в исходное нулевое состояние.

Счётчик с $K_C = 10$ называется десятичным или декадным. Этот счётчик нашёл широкое применение для регистрации числа импульсов с последующим визуальным отображением результата. Десятичные счётчики часто включают последовательно (рис. 1.4).

Рис. 1.4. Последовательное включение десятичных счетчиков

Если в пределах всех декад счёт ведётся в двоичной системе счисления, то, например, числу 987_{10} будет отвечать код $1001\ 0111\ 1000_2$, характеризующий двоично—десятичную систему счисления всего счётного устройства.

Все существующие типы счётчиков (в том числе и те, которые рассмотрены ниже) могут быть реализованы как асинхронные, так и синхронные. В последнем случае на входы C триггеров должны одновременно со счётным поступать синхроимпульсы (см. рис. $1.1\,\mathrm{a}$).

Вычитающие и реверсивные двоичные счётчики

В вычитающих счётчиках с приходом очередного счётного сигнала предыдущий результат уменьшается на единицу, таким образом реализуется последовательность чисел, начиная с $2^{\Pi}-1$ и кончая 0. После получения значения 0 последовательность повторяется. Вычитающий счётчик в отличие от суммирующего строится так, что со входом каждого последующего триггера соединяется инверсный выход предыдущего триггера (см. рис. 5).

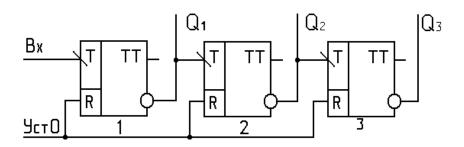


Рис.1.5. Вычитающий счетчик

В реверсивном счётчике объединяются схемы суммирующего и вычитающего счётчиков. Кроме того, существует возможность управления направлением счёта с помощью дополнительного устройства. Схема реверсивного счётчика в интегральном исполнении приведена на рис. 1.6. Для счётных сигналов предусмотрены два входа. Если счётчик работает как суммирующий, сигналы счёта следует подавать на вход +1. Для вычитающего счётчика сигналы счёта подаются на вход –1. На выходе счётчика, обозначенном >15,

сигнал появляется при переходе счётчика в состояние с номером 15, в котором все триггеры установлены в 1. На этом выходе формируется сигнал переноса в следующий счётчик. На выходе <0 сигнал появляется при заполнении счётчика нулями. Это сигнал займа в следующий счётчик в схеме вычитающего счётчика. Допускается установка заданного исходного состояния счётчика с помощью ввода в счётчик нужной кодовой комбинации a_0 , a_1 , a_2 , a_3 при наличии разрешения на входе V.

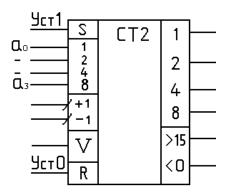


Рис. 1.6. Схема реверсивного счётчика в интегральном исполнении

Рассмотренные схемы счётчиков на рис. 1.1 и рис. 1.2 называются счётчиками с последовательным переносом. В таких счётчиках есть существенный недостаток — накапливать от разряда к разряду время задержки $t_3 = \pi t_{\Pi}$ (на рис. 1 в. это время не учтено), где t_{Π} — время переключения триггера. Время задержки растёт с ростом числа разрядов в счётчике. Поэтому это время ограничивает максимальную частоту подачи сигналов на вход, тем самым ограничивается быстродействие счётчика. Для уменьшения времени задержки распространения переносов используются счётчики с параллельным и параллельно-последовательным переносом.

Счётчики с параллельным и параллельно-последовательным переносом.

Пример выполнения двоичного счётчика с <u>параллельным переносом</u> представлен на рис. 7.

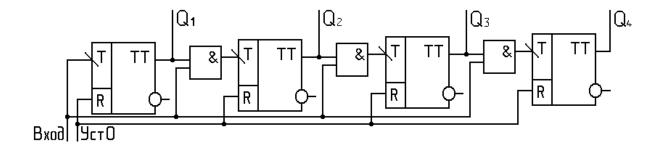


Рис.1.7. Двоичный счётчик с параллельным переносом

Задержка определяется только схемами И и значительно в меньшей степени количеством разрядов в счётчике. Схемы И используются для формирования «сквозных» переносов, при которых единица даже в самый старший разряд заносится почти одновременно с поступлением импульса счёта.

Работа счётчика с таким переносом основана на следующей закономерности двоичных чисел: 1) если в младшем разряде предыдущего значения счётчика имеется 0, то суммирование изменяет лишь цифру младшего разряда на 1; 2) если в m младших разрядах содержится 1, а в (m + 1)—м разряде — 0, то цифры m младших разрядов изменяются на значение 0, а в (m + 1)—м разряде — на значение 1.

Например.

Указанная закономерность используется в счётчиках с параллельным переносом.

При одном и том же числе разрядов предельная частота счётчика с параллельным переносом $f_{C\Pi}$ будет выше, чем в счётчике последовательного переноса $f_{\Pi\Pi}$:

$$f_{\text{C}\Pi\text{max}} \le \frac{1}{\Pi \cdot t_{3M}} \; ; \; f_{\Pi\Pi\text{max}} \le \frac{1}{\Pi \cdot t_{II}} \, ,$$

где t_{3N} — время срабатывания схемы И; t_{Π} — время переключения триггера; Π — число разрядов счётчика.

Так как $t_{\Pi} >> t_{3H}$, то $f_{\Pi\Pi} << f_{C\Pi}$

При организации декадного счёта применяются последовательнопараллельные схемы переноса (рис. 1.8). Схема такого счётчика состоит из 4 х декад, внутри каждой из которых организуется параллельный перенос, а между декадами — последовательный. С заполнением младшей декады срабатывает схема И и начинает считать 2—я декада, после 16—ти кратного заполнения первой и однократного — второй декады начинает считать третья декада и т. д.

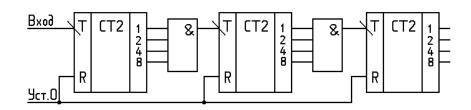


Рис. 1.8. Последовательно-параллельные схемы переноса

Задержка в многоразрядном счётчике будет пропорциональна числу декад. IV. Методические указания.

1. Срисовать с карты У–1 схему счётчика. Для этой схемы заполнить таблицу состояний (табл. 1.3).

Таблица 1.3 Таблица состояний триггеров

№ состояния		Положения	триггеров	
Н2 СОСТОЯНИЯ	y ₄	У3	У2	Y ₁
0				
1				
П				

а). Произвести соединения выходов $Y \in X$, чтобы получить модуль счёта K_C , заданный в таблице 1.4.

Модули счета

Кс	16	14	13	12	11	10	9	8	7	6	5	4	3
X ₃	_												
χ_2	_												
X ₁	_												

- б). Нарисовать временные диаграммы работы счётчика для $K_C = 16$.
- в). Проверить работу счётчика на соответствие таблице 1.4. Для этого наложить карту У—1 на лицевую панель стенда и произвести двоичный счёт входных импульсов, поступающих от формирователя F— Γ —, который работает от кнопки SB1.

Коммутацию выходов \mathcal{Y} с \mathcal{X} производить специальными одножильными перемычками.

- 2. Дать таблицу состояний триггеров вычитающего 4-разрядного счётчика. Названия строк и столбцов этой таблицы такие же, как в таблице 1.3.
- а). Проверить работу счётчика на соответствие его таблице состояний триггеров. Для этого наложить карту У–2 на лицевую панель и проверить двоичный счёт.
 - 3. Срисовать с карты У–3 схему реверсивного счётчика.
 - а). Описать работу счётчика и назначение его элементов:

SA1 ÷ SA4 – двоичный код начальной установки счётчика;

SA5 – установка реверса;

SB1 - кнопка для ручной имитации входных импульсов;

SB2 – кнопка разрешения на начальную установку;

SB3 – «Уст. 0»;

HG – индикатор десятичного счёта.

б). Проверить работу реверсивного счётчика в режимах прямого и обратного счёта с предустановкой его начального значения от 0 до 15. Результаты сверить с таблицей 1.5.

Предварительная установка реверсивного счетчика

						Про	едвар	итель	ная у	стано	вка					
	0	1	2	3	4	5	6	7	8	9	10	11	10	13	14	15
Число им- пульсов прямого счёта	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Число им- пульсов обратного счёта	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

V. Контрольные вопросы.

- 1. Что означает аббревиатура ПЦУ, КЦУ?
- 2. Дать определение для счётчика импульсов.
- 3. Дать классификацию счётчиков импульсов.
- 4. Что не учтено во временной диаграмме рис. 1 в?
- 5. Какой способ переноса осуществляется в схеме счётчика рис. 1 а?
- 6. Что означает модуль счёта?
- 7. Какие триггеры применяются в счётчиках, изображённых на картах У-1 и У-2?
 - 8. Нарисуйте схему последовательного счётчика с модулем $K_C = 10$.
 - 9. В чём суть принудительного насчёта и естественного порядка счёта?
- 10. Видоизменить схему счётчика рис. 3 так, чтобы осуществлялся счёт с $K_C = 11$.
 - 11. Нарисуйте условное изображение реверсивного счётчика.
 - 12. Что такое сквозной перенос?
 - 13. Расшифруйте условное изображение счётчика на ИС.

Тема 2 «Исследование арифметико-логического устройства»

I. Цель работы.

Практическое ознакомление с работой арифметико-логического (АЛУ) на ИС.

- II. Задание.
- I. Исследовать работу АЛУ с ручным управлением на ИС типа К155ИП3 с решением задач в машинных кодах.
 - III. Теоретическая часть.

<u>Арифметико</u>—логическое устройство предназначено для выполнения арифметических и логических операций над двумя многоразрядными числами. АЛУ является основным устройством ЭВМ. Вместе с устройством управления оно образует <u>процессор</u> (в больших ЭВМ) или <u>микропроцессор</u> (в микро ЭВМ), предназначенный производить кроме арифметических и логических действий и другие <u>микрооперации</u>.

<u>Арифметические операции</u>. АЛУ различных типов способны выполнять разные наборы арифметических операций, например, сложение, вычитание, сдвиг вправо, сдвиг влево. На основе этих арифметических операций можно выполнить и более сложные операции, такие как умножение и деление, приращение положительное, приращение отрицательное.

<u>Логические операции</u>. АЛУ практически любой ЭВМ способны выполнять логические операции И, ИЛИ, Исключающее ИЛИ, НЕ. Рассмотрим, как можно использовать логические операции на примере операции И.

Предположим, что на рис. 2.1 а представлено восьмиразрядное слово информации и необходимо выяснить чему равно содержимое разряда $b_3 - 0$ или 1.

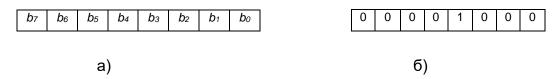


Рис. 2.1. Восьмиразрядное слово информации:

а) слово; б) маска

Для этого с помощью операции И надо сравнить это число с так называемой маской (рис. 2.1 б). Все биты числа маски равны 0, кроме бита, который должен сравниваться с b_3 ; этот бит равен 1. Для битов от b_0 до b_2 и от b_4 до b_7 результатом сравнения будет 0. Если результат в целом есть 00001000, то b_3 имеет значение 1; если же результат есть 00000000, то b_3 равен 0. Таким образом, единицу из числа можно выделить с помощью маскирования всех других его бит.

Подобные действия имеют практическое применение при маскировании с любым набором битов маски и при использовании других логических операций. В составлении команд языка ассемблера маскирование является мощным средством по реализации логических операций [1].

<u>Структурная схема АЛУ</u>. Обычно АЛУ имеет два входных порта, обозначенных как «Вход», и один выходной порт — «Выход» (рис. 2.2).

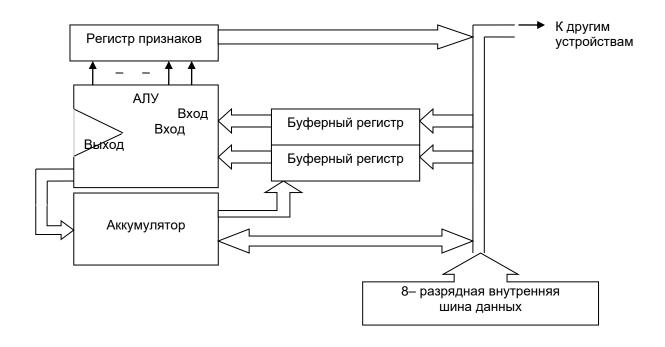


Рис. 2.2. Структурная схема АЛУ

Оба входных порта снабжены буферами, роль которых выполняют регистры для временного хранения данных (буферные регистры).

Два входных порта позволяют АЛУ принимать данные или с внутренней шины данных, или из специального регистра, именуемого аккумулятором. Последний служит для хранения слова данных, полученного в результате выполнения АЛУ очередной операции.

<u>Регистр признаков</u> предназначен для хранения результатов некоторых проверок, осуществляемых в процессе выполнения логических операций. В случае выполнения определённых условий в отдельные биты регистра признаков будут записаны 1. Таким способом можно кодировать результаты основных операций, выполняемых АЛУ; например, для большинства ЭВМ используются следующие признаки:

- S признак знака, устанавливается, если результат выполнения операции отрицателен;
- Z— признак нуля, устанавливается, если результат выполнения операции равен 0;
- *AC* признак вспомогательного переноса, используется в команде «десятичной коррекции», когда результат суммирования нужно получить в десятичных числах;
- Р признак приоритета, используется при передаче двоичных чисел для
 проверок на чётное (или нечётное) количество единиц в слове;
- СУ признак переноса, используется при переполнении разрядной сетки в процессе суммирования. В неиспользованные разряды регистра признаков после «сброса» записываются 0 или 1. Для 8—разрядной микроЭВМ регистр признаков имеет вид как на рис. 2.3.

S	Z	0	AC	С	Р	1	СУ
---	---	---	----	---	---	---	----

Рис. 2.3. Регистр признаков

Использование содержимого регистра признаков привело к появлению команд условного перехода. Эти команды предназначены для изменения хода выполнения программы решения задачи на ЭВМ. Более подробную информацию о регистре признаков можно получить в [2].

Условное графическое изображение АЛУ (рис. 2.4).

 $K_0 - K_3$ — входы первого операнда;

 $B_0 - B_3$ — входы второго операнда;

 $F_0 - F_3$ — выходы результата операций;

 $S_0 - S_3 -$ управляющие входы;

M — признак операции: M = 1 означает первые 32 операции; M = 0 означает вторые 32 операции. В других АЛУ значения этого признака 0 или 1 могут означать соответственно арифметические и логические типы операций;

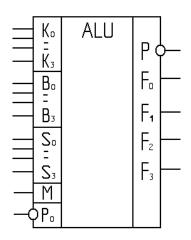


Рис. 2.4. Условное графическое изображение АЛУ

 P_0 — вход переноса; P — выход переноса.

В качестве примера в таблице 1 приведены 33 операции; код этих операций определяется сигналами, подаваемыми на управляющие входы S, M и P_0 .

Операции (коды и типы)

Таблица 2.1

Код операции Тип операции Примечание «2» M = 0«16» M = 1S₃ S₂ S₁ S₀ 3 4 1 При *P* = 1 A^{-} 0 0 0 0 0 \boldsymbol{A} 0 0 0 1 $A \vee B$ $\overline{A \vee B}$ 2 0 0 1 0 $A \wedge B$ $A \vee B$ 3 0 0 1 1 0 0 0 0 1 1 1 1 При $P_0 = 1$

4	0 1 0 0	$\overline{A \wedge B}$	$A + A \wedge \overline{B}$	«
5	0 1 0 1	\overline{B}	$A \lor B + A \land B$	«
6	0 1 1 0	$A \oplus B$	$A + \overline{B}$	$A - B$ При $P_0 = 0$; М
7	0 1 1 1	$A \wedge \overline{B}$	$A \wedge B - 1$	При $P_0 = 1$
8	1 0 0 0	$\overline{A} \vee B$	$A + A \wedge B$	«
9	1 0 0 1	$\overline{A \oplus B}$	A + B	«
А	1 0 1 0	В	$A \vee \overline{B} + A \wedge B$	«
В	1 0 1 1	$A \wedge B$	$A \wedge B + 1$	«
С	1 1 0 0	1 1 1 1	A + A	«
D	1 1 0 1	$A \vee B$	$A \vee B + A$	«
Е	1 1 1 0	$A \vee B$	$A \vee \overline{B} + A$	«
F	1 1 1 1	A	A-1	«

Продолжить эту таблицу для остальных команд (всего 64 команды) можно, задав $P_0 = 0$.

Наличие входа переноса Р0 и выхода переноса Р даёт возможность наращивать разрядность АЛУ. Наращивание осуществляют с помощью дополнительной микросхемы СУП (схема ускоренного переноса). Так, СУП 564ИП4 позволяет объединить четыре АЛУ 564ИП3 и получить 16—разрядное АЛУ.

На основе микросхемы АЛУ, СУП и других можно строить различные вычислительные устройства автоматики, управляемые системой команд, т. е. работающие под управлением программ. АЛУ входит в структуры микропроцессорных систем.

IV. Методические указания к карте У1-1.

Для лучшего понимания работы АЛУ в установке используется ручное управление. 16—ричный код операндов набирается кнопкой *SB1* с контролем по индикатору *HG*1. Двоичный код адресата нужного устройства набирается переключателями *SA3*, *SA2*, *SA1*; кнопкой *SB3* производится разрешение про-

хождения кода адреса с выхода счётчика в нужное устройство. В таблице 2.2 даны коды этих устройств.

Таблица 2.2 Коды устройств

Двоичный код адреса	Нешение уствейства				
SA3 SA2 SA1	Наименование устройства				
0 0 0	К – регистр 1-го операнда;				
0 0 1	В — регистр 2-го операнда;				
0 1 0	S — регистр кода операции;				
1 0 0	R — вход считывания с аккумулятора;				
1 0 1	У — разрешающий вход на запись в аккумулятор.				

Примеры решения задач по составлению программ в кодах машины.

Задача 1. Дано $A = 5_{16}$, $B_{16} = 3_{16}$; из A вычесть B, результат инвертировать. Ответ: \mathcal{L}_{16} .

Решение проведём по шагам:

- 1. Ввести код операции «6» (при M = 0, $P_0 = 0$ см. табл. 2.1), нажимая на кнопку SB1 нужное число раз. Контроль за введённым числом производить по дисплею HG1.
- 2. Набрать переключателями SA3, SA2, SA1 адрес 010, соответствующий регистру кода операции (см. табл. 2).
- 3. Нажав на кнопку *SB*3, переслать введённый код в регистр *S*. Контроль производить по свечению светодиода *HL*3.
 - 4. Ввести операнд $K = 5_{16}$. Контроль по HG1.
- 5. Набрать адрес регистра операнда K (SA3, SA2, SA1 = 000) и, нажав на кнопку SB3, переписать введённое значение операнда K в регистр K. Контроль по свечению HL1.
 - 6. Ввести операнд $B = 3_{16}$ с помощью кнопки SB1. Контроль по HG1.
- 7. Набрать адрес регистра операнда B(SA3, SA2, SA1 = 001) и с помощью кнопки SB3 переписать введённое значение в регистр B. Контроль по HL2.
- 8. Набрать адрес аккумулятора (SA3, SA2, SA1 = 101) и, нажав на кнопку SB3, переписать результат выполнения операции (S, M, P_0) над введёнными

операндами ($K = 5_{16}$, $B = 3_{16}$) с выхода АЛУ в аккумулятор. Контроль за операцией перезаписи по свечению HL5. Результат операции считывается в виде 16—ричного кода с дисплея HG1 и сигнала переноса в старший разряд (только при выполнении арифметических задач) с индикатора HL6.

- 9. Набрать адрес операнда регистра K (SA3, SA2, SA1 = 000), переписать число из аккумулятора в регистр K результат (A-B). При этом нажать на кнопку SB3 и контролировать по HL1.
- 10. Набрать код операции «0» кнопкой SB1 (при этом M = 0, $P_0 = 1$) и ввести его в регистр S (SA3, SA2, SA1 = 010) нажатием кнопки SB3.

Примечание. Код операции «0» можно также получить, сбросив счётчик в 0. Для этого набрать SA3, SA2, SA1 = 100_2 и нажать на кнопку SB3. Контроль по *HL4*.

11. Набрать адрес аккумулятора (SA3, SA2, SA1 = 101) и, нажав на кнопку SB3, переписать результат с выхода АЛУ в аккумулятор.

Задача 2. Вычесть из числа $A = 3_{16}$ число $B = 5_{16}$. Ответ будет E_{16} .

Проверьте ответ, решив эту задачу вручную, представляя отрицательное число дополнительным кодом.

Решение.

1. По команде 01102 = «6» происходит сложение числа A и B, причём первое слагаемое представлено в прямом, а второе слагаемое B - B дополнительном двоичных кодах. Поскольку по абсолютной величине B > A, то разность будет в дополнительном коде:

Если бы выполнялось условие |B| < |A|, то разность была бы в прямом двоичном коде. Таким образом, признаком отрицательного числа служит 1 в старшем разряде двоичного числа.

Задача 3. Вычесть из числа $A = 3_{16}$ число $B = 3_{16}$. Ответ должен быть 0. Ручная проверка с представлением вычитаемого в дополнительном коде даст тот же результат:

Единица результата «теряется», выходя за пределы разрядной сетки.

Признаки нулевого, отрицательного и положительного результатов, как говорилось в разделе III, фиксируются соответствующими битами регистра признаков (этот регистр в лабораторном стенде отсутствует).

Задача 4. Сложить число $A = 9_{16}$ с числом $B = A_{16}$. Индикатор HG1 высветит цифру 3, при этом нужно учитывать в качестве старшего разряда результата единицу переноса, о чём свидетельствует P = 1 светодиод HL6. Следовательно, окончательный ответ будет 13_{16} .

Примечание. Сигнал переноса нужно учитывать только при выполнении арифметических операций суммирования.

V. Контрольные вопросы.

- 1. Чем отличается микропроцессор от процессора?
- 2. Перечислите основные арифметические и логические операции, выполняемые АЛУ.
 - 3. Для чего служит регистр признаков?

- 4. Какую роль выполняет аккумулятор?
- 5. Дать условное графическое изображение АЛУ.
- 6. Какие признаки должен бы иметь регистр признаков изучаемого АЛУ?

Тема 3 «Исследование оперативной памяти и мультиплексной организации шины данных»

І. Цель и содержание.

Практическое ознакомление с принципами работы оперативного запоминающего устройства (ОЗУ) и исследованием мультиплексного способа организации внутренней шины данных.

- II. Задание.
- 1. Исследовать работу ОЗУ в режимах записи и считывания.
- 2. Исследовать мультиплексный способ организации внутренней шины данных.

III. Теоретическая часть.

Микросхемы памяти широко применяются в современной электронной аппаратуре самого различного назначения. Мы ознакомились, в частности, с ПЗУ (постоянное запоминающее устройство), которое использовалось совместно с дешифратором для преобразования кодов в устройстве отображения информации [2]. Основное же назначение памяти — это использование её в современных ЭВМ. Как функциональная часть ЭВМ память служит для записи, хранения и выдачи команд и обрабатываемых данных.

Комплекс технических средств, реализующих функцию памяти, называется запоминающим устройством (ЗУ).

Мы изучали арифметико-логическое устройство с ручным управлением. С автоматическим управлением это устройство называется микропроцессором. Для обеспечения работы микропроцессора необходима программа, т. е. последовательность команд, и данные, над которыми процессор производит предписываемые командами операции. Команды и данные поступают в ос-

новную память ЭВМ через устройство ввода, на выходе которого они получают цифровую форму представления,

т. е. форму кодовых комбинаций 0 и 1.

Основная память, как правило, состоит из ЗУ двух типов — оперативного (ОЗУ) и постоянного (ПЗУ).

ОЗУ предназначено для хранения переменной информации и допускает изменение своего содержимого в ходе выполнения микропроцессором вычислительных операций с данными. Это значит, что микропроцессор может выбрать из ОЗУ код команды и данные после обработки поместить в ОЗУ новые данные на места прежних, которые в этом случае перестают существовать. Таким образом, ОЗУ может работать в режимах записи, считывания и хранения информации.

ПЗУ содержит информацию, которая не должна изменяться в ходе выполнения микропроцессором программы. Такую информацию составляют стандартные программы, табличные данные, коды физических констант и постоянных коэффициентов и т. д. Эта информация заносится предварительно, например, путём электрического сигнала, и в ходе работы микропроцессора может только считываться. ПЗУ, таким образом, целесообразно прежде всего использовать в специализированных автоматических устройствах, работающих по постоянной программе.

Микросхемы памяти изготавливают по полупроводниковой технологии на основе кремния с высокой степенью интеграции элементов и компонентов на кристалле, что определяет их принадлежность к большим интегральным схемам (БИС). Конструктивно БИС памяти представляет собой полупроводниковый кристалл с площадью в несколько десятков квадратных миллиметров, заключённый в корпус.

Общие характеристики БИС памяти: информационная ёмкость [бит или байт], быстродействие [нс], энергопотребление [Вт].

Основной составной частью микросхем ОЗУ и ПЗУ является массив элементов памяти (ЭП), объединённых в матрицу накопителя.

Элемент памяти может хранить один бит (0 или 1) информации. Каждый ЭП имеет свой адрес. Такая организация ОЗУ называется одноразрядной (рис. 3.1 а).

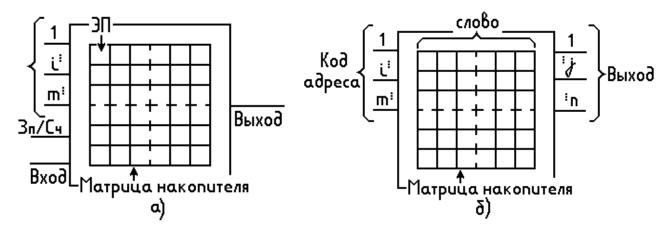


Рис. 3.1. **Организация ОЗУ:** а – одноразрядная; б - многоразрядная

При обращении к ЭП, последний выбирается с помощью кода адреса, сигналы которого подводятся к соответствующим выводам микросхемы.

Запоминающее устройство (ОЗУ или ПЗУ), которое допускает обращение по адресу к любому ЭП в произвольном порядке, называется <u>запоминающим</u> устройством с произвольной выборкой (ЗУПВ).

Число двоичных разрядов кода адреса должно быть такое, чтобы имелась возможность адресоваться к любому ЭП. Например, в микросхеме ОЗУ, содержащей 1024 ЭП, число адресных разрядов должно быть m = 10, т. к. $2^{10} = 1024$. (Заметим, что для обозначения числа $2^{10} = 1024$ в вычислительной технике применяют букву K).

Для ввода и вывода информации служит вход и выход микросхемы. Для управления режимом (записи или считывания) служит сигнал «запись—считывание» (*W/R*). Если этот сигнал равен 1, то происходит запись, если 0 — считывание.

Некоторые ОЗУ и все ПЗУ имеют многоразрядную организацию, инаце называемую «словарной» (рис. 3.1 б). У таких микросхем насколько информационных входов и столько же выходов, и поэтому они допускают одно-

временную запись (считывание) многоразрядного кода, который принято называть «словом» или ячейкой памяти.

Для построения ОЗУ на микросхемах с одноразрядной организацией необходимо объединить микросхемы с тем, чтобы обеспечить возможность записи информации в ОЗУ, её хранение и считывание в форме многоразрядного цифрового кода, т. е. слова.

Микросхемы ОЗУ по типу ЭП разделяют на статические и динамические. В статических ОЗУ в качестве ЭП применены статические триггеры. Число состояний, в которых может находиться триггер, равно двум, что и позволяет использовать его для хранения двоичной единицы информации (бит).

В микросхемах динамических ОЗУ элементы памяти выполнены на основе электрических конденсаторов, сформированных внутри полупроводникового кристалла. Такие ЭП не могут долгое время сохранять своё состояние, определяемое наличием или отсутствием электрического заряда, и поэтому нуждаются в периодическом восстановлении (регенерации). Динамические ОЗУ сложнее в применении, поскольку нуждаются в организации принудительной регенерации, в дополнительном оборудовании и в усложнении устройств управления.

В микросхемах ПЗУ функции ЭП выполняют перемычки в виде проводников, диодов, транзисторов между шинами строк и столбцов в накопителе. В такой матрице наличие перемычки соответствует, например, 1, а её отсутствие — 0.

Микросхема памяти как функциональный узел. На рис.3.2 приведены условные графические изображения статических одноразрядного (рис. 3.2 а) и со словарной организацией (рис. 2.2 б) ОЗУ. Первое предназначено для хранения — 256x1 бит, а второе — 2048x8 = 16 кбайт.

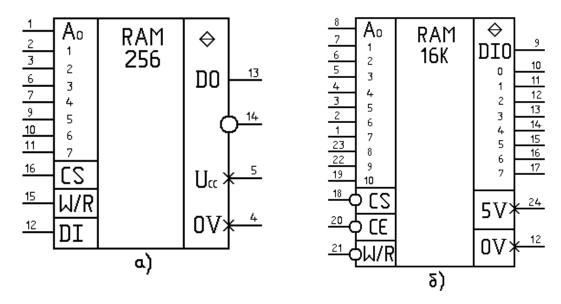


Рис. 3.2. Условные графические изображения статических одноразрядного (а) и со словарной организацией (б) ОЗУ

Сигналы и соответствующие выводы микросхем можно подразделить на адресные, управляющие и информационные. Отдельную группу составляют выводы для подключения напряжения источника питания. Ниже приведены обозначения сигналов и выводов в соответствии с ГОСТ 1948–74:

 $A_0 \div A_{10}$ — адресные входы,

CS — выбор микросхемы,

ОЕ— разрешение по выходу (используется при считывании),

W/R— запись-считывание,

Д1 — входные данные,

D0 — выходные данные,

Д10 — данные: вход-выход,

 U_{CC} — напряжение питания,

ОУ — общий вывод микросхемы.

На рис. 3.2а представлено условное изображение микросхемы статического ОЗУ типа К561РУ2. Число адресных входов позволяет определять информационную ёмкость микросхемы: 2⁸ = 256 бит. Наличие одного информационного входа Д1 и одного выхода Д0 (прямого и инверсного) указывает на одноразрядную организацию микросхемы памяти: 256х1 бит.

Для управления режимом работы предусмотрены два сигнала: \overline{CS} (выбор микросхемы) и *W/R* (запись—считывание). Сигнал \overline{CS} разрешает или запрещает обращение к микросхеме по информационным входу и выходу. Наличие на этом входе сигнала с уровнем логической 1 однозначно определяет режим хранения. При этом выход принимает высокоомное состояние, при котором он электрически отключён от приёмника информации. Имея в виду, что обычно у микросхемы выход может находиться в одном из двух состояний, соответствующих логическим 0 и 1, указанное высокоомное (иначе — высокоимпедансное) состояние называется третьим. Выходное напряжение в третьем состоянии имеет уровень, равный приблизительно половине наибольшего значения выходного напряжения. Наличие у микросхемы выхода на три состояния указывается на правом поле её условного изображения специальным знаком:

- \diamondsuit выход на три состояния,
- $igoplus_{-}$ выход с открытым эмиттером ОЭ $\emph{n-p-n}$ транзистора,

 \bigcirc — выход с открытым коллектором ОК n–p–n транзистора, с открытым стоком ОС (МДП–транзистора с n–каналом). При обращении к микросхеме через вход $\mathcal{L}1$ для записи или считывания одного бита информации необходимо подать разрешающий сигнал \overline{CS} и сигнал W/R с уровнем: при записи — 1, при считывании — 0. Вход и выход микросхемы К561РУ2 развязаны, т. е. на могут влиять на состояния друг друга. Таким свойством обладают микросхемы с выходами на три состояния. Учитывая отмеченную особенность, можно объединять входы и выходы микросхемы и подключить их к общей информационной шине, по которой информация подаётся к микросхеме и выводится из неё.

На рис. 3.26 приведено условное изображение статического ОЗУ типа КР573РУ8 со словарной организацией, позволяющее производить запись и считывание информации 8–разрядными словами (байтами). Причём входы и выходы совмещены и обладают свойством двунаправленной проводимости. Сигнал \overline{OE} разрешает выход, т. е. разрешает считывание при $\overline{CS}=0$.

Таблицы истинности для микросхем рис. 1 приведены соответственно в таблицах 3.1 и 3. 2.

Таблица истинности

Таблица истинности

\overline{CS}	W/R	A₀ ÷ A₁₀	Д1	Д0	Режим работы
1	X	X	X	Z	Хранение
0	1	Α	0	Z	Запись 0
0	1	Α	0	Z	Запись 1
0	0	Α	X	д, $\overline{\mathcal{A}}$	Считывание

Примечание. X — произвольное состояние (0 или 1); Z — высокоомное.

Таблица истинности

Таблица 3.2

\overline{CS}	\overline{OE}	W/R	$A_0 \div A_{10}$	д10 ₀ ÷ Д10 ₇	Режим работы
1	X	Χ	X	Z	Хранение
0	X	0	Α	0	Запись 0
0	X	0	Α	1	Запись 1
0	1	1	Α	Z	Чтение без выдачи
0	0	1	Α	До ÷Д7	Считывание

IV. Методические указания.

На карте У1–3 изображена схема ОЗУ с ручным управлением. По индивидуальному заданию преподавателя произвести запись и считывание информации. Двоичный код адреса нужного устройства набирается переключателями SA3, SA2, SA1; кнопкой SB3 производится выбор устройства в соответствии с набранным адресом (см. таблицу 3.3).

Таблица 3.3

Устройства с кодами адресов

Двоичный код адреса SA3 SA2 SA1	Наименование устройства
0 1 1	C = 1 – параллельный регистр адреса ячейки ОЗУ; контроль по <i>HL2</i> «запись».

0	W = 1 — выбор микросхемы ОЗУ;
	контроль по <i>HL3</i> «чтение».

Шестнадцатеричный код операндов (код адреса ячейки памяти или данные) набирается кнопкой SB1 с контролем по блоку индикации (БИ). В зависимости от сигнала на входе A мультиплексор $\mathcal{L}2$ передаёт на внутреннюю шину данные счётчика $\mathcal{L}10$ (A = 0, кнопка SB2 отжата), либо содержимое выбранной ячейки O3Y (A = 1, кнопка SB2 нажата).

Примеры решения типовых задач.

Задача 1. Обнулить содержимое нулевой ячейки ОЗУ.

1

Решение.

- 1. Нажимая на кнопку *SB1* добиться, чтобы индикатор БИ показал число 0₁₆.
- 2. Переключателями $SA1 \div SA3$ набрать код адреса регистра $RG A 011_2$ (SA3 старший разряд).
- 3. Нажатием кнопки *SB3* набираем нулевой адрес ячейки O3У; контроль по *HL*2.
- 4. Переключателями $SA1 \div SA3$ набрать код адреса самого устройства ОЗУ -110_2 .
- 5. Нажатием кнопки *SB*3 в ячейку ОЗУ по нулевому адресу запишется число 0000_2 по входам $\mathcal{L}1 \div \mathcal{L}8$ ОЗУ. Контроль по *HL*3.

Задача 2. Прочитать содержимое нулевой ячейки ОЗУ.

Решение.

- 1. Нажимая на кнопку SB1 набрать адрес ячейки; контроль по БИ.
- 2. Переключателями SA1 \div SA3 набрать код адреса регистра RG–A 011₂.
- 3. Нажатием кнопки SB3 зафиксировать набранный адрес на адресной шине O3У ($A1 \div A8$).
- 4. Нажатием кнопки *SB2* произвести считывание нулевой ячейки ОЗУ. Контроль по БИ.

V. Контрольные вопросы.

- 1. Что называют запоминающим устройством?
- 2. Что относят к понятию «микропроцессор»?
- 3. Какую роль исполняют ОЗУ, ПЗУ?
- 4. Какими параметрами можно оценить работу памяти ЭВМ?
- 5. Что является элементом памяти ОЗУ современных ЭВМ?
- 6. Чем отличается многоразрядная организация ОЗУ от одноразрядной?
- 7. Каково назначение выводов различных микросхем ОЗУ?

Тема 4 «Исследование модели четырехразрядного микропроцессора»

I. Цель и содержание.

Практическое ознакомление с архитектурой и принципами функционирования микропроцессора на примере четырехразрядной модели. Освоение выполнения команд в ручном режиме.

- II. Задание индивидуальное каждому студенту:
- 1. Изучить структуру и логику работы четырехразрядной микроЭВМ (микропроцессора).
- 2. Разработать алгоритм (программу) на машинных кодах для выполнения индивидуального задания.
 - III. Теоретические сведения.

Приступая к изучению микроЭВМ мы предварительно ознакомились с её основными устройствами: АЛУ и ОЗУ. Кроме этих устройств, к основным следует отнести устройство управления (УУ), которое чрезвычайно важно в поддержании требуемой последовательности включения и выключения АЛУ, ОЗУ и всех остальных устройств (регистров, счётчиков, внешних устройств).

На рис. 1 приведена структурная схема 8—разрядной микроЭВМ, в которой сигналы управления поступают от УУ (по одиночному проводу) на все внутренние и внешние звенья типичной малоразрядной микроЭВМ.

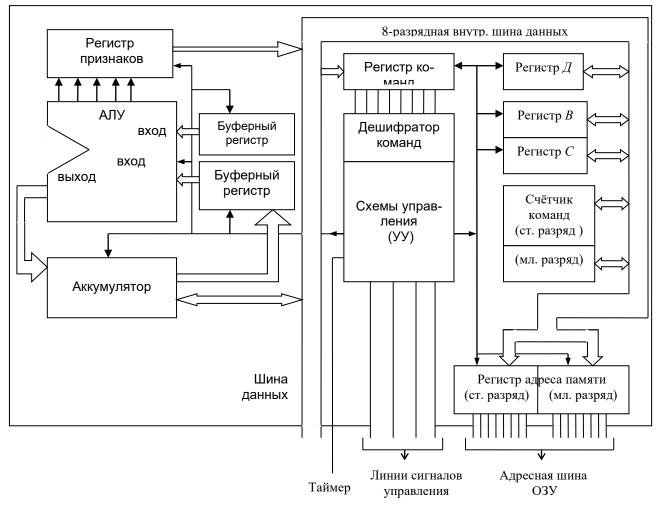


Рис. 4.1. Структурная схема 8-разрядной микроЭВМ

Устройство управления начинает работать с момента пуска машины. В счётчик команд записывается адрес первой команды программы, хранящейся в ОЗУ. Этот адрес затем посылается из счётчика команд в регистр адреса памяти. Считывается содержимое ячейки с указанным адресом. Этим содержимым должен быть код команды (но не данные). Из ОЗУ код команды по шине данных пересылается в регистр команд. С выходов регистра команд код параллельно поступает на дешифратор команд и декодируется им. В соответствии с кодом команды с УУ, поступают последовательно управляющие сигналы на все звенья микроЭВМ.

Обмен информацией между устройствами производится в двух направлениях. Это становится возможным для микромодулей с тремя состояниями по отношению к шине данных: приёма, передачи и отключения, т. е. мультиплексная организация шины данных. С извлечением кода команды из ОЗУ,

даётся приращение +1 содержимому счётчика команд. Это приращение счётчик получает как раз в тот момент, когда начинает выполняться команда, только что извлечённая из ОЗУ. Следовательно, начиная с этого момента, счётчик команд «указывает», какой будет следующая команда. Так будет продолжаться до извлечения из ОЗУ последней команды программы. Нормальный ход программы может быть нарушен, если в счётчик команд записать другой адрес, выпадающий из последовательности команд основной программы. Такое «нарушение» происходит с помощью команд перехода (условного и безусловного), которыми пользуются для вызова подпрограмм (подпрограмма — часть программы, оформленная в виде, допускающем многократное обращение к ней из различных точек основной программы). По выполнении подпрограммы нормальная последовательность команд основной программы восстанавливается с помощью команды возврата.

Регистры общего назначения (регистры В, С, Д) служат для временного хранения информации в процессе выполнения текущей команды. Обычно операции, использующие эти регистры, влияют на содержимое регистра признаков.

По четырём линиям управления поступают сигналы на дешифраторы адресов устройств ввода-вывода (две линии) и накопителей ОЗУ (две линии). Таким образом, одновременное разрешение на включение (инициализацию) возможно одному из четырёх устройств ввода-вывода или одному из четырёх накопителей ОЗУ.

По линии «таймер» на УУ поступают тактовые сигналы, синхронизирующие во времени работу всей микроЭВМ.

IV. Методические указания.

На карте 1У—2 изображена схема четырёхразрядной микроЭВМ с ручным управлением. Роль УУ при работе такой машины будет выполнять студент. Поэтому в схеме отсутствуют само УУ, дешифраторы адресов устройств ввода-вывода и накопителей ОЗУ.

В состав исследуемой микроЭВМ входят:

- дешифратор адреса устройств машины (дешифратор Д1);
- переключатели *SA4*, *SA5* и кнопки *SB1* \div *SB3* для формирования сигналов управления;
- микропроцессор, состоящий из АЛУ (Д9), аккумулятора (Д10), регистра команд S (Д7) и буферных регистров *К*, *B* (Д5, Д6);
 - оперативное запоминающее устройство (Д4) с регистром адресов А (Д8);
- внутренняя шина данных с мультиплексным управлением от мультиплексора группового управления Д2 (при A=0 на шину данных коммутируются входы X, при A=1 входы Y);
- блок индикации, включающий ПЗУ с дешифратором на ДЗ для семисегментного индикатора *HG1*.

В буферных регистрах *К* и *В* хранится содержимое операндов *А* и *В* соответственно при выполнении команд, требующих обращений к АЛУ. Двоичный код адреса нужного устройства набирается вручную переключателями *SA3*, *SA2*, *SA1* (*SA3* — старший разряд). Данные имитирует содержимое счётчика (Д10). При опросе по входу «У» счётчик работает в качестве аккумулятора, фиксируя результат выполнения очередной операции, производимой АЛУ. Кнопкой SB1 производится приращение содержимого счётчика на +1. Кнопкой SB3 осуществляется инициализация одного из устройств машины в зависимости от кодовой комбинации, набранной переключателями. В таблице 3.1 даны коды адресов устройств машины. Кнопкой *SB2* на шину данных можно вывести содержимое ячеек ОЗУ при их опросе через регистр адреса *A*.

Таблица 3.1 Коды команд устройств с адресами

Двоичный код адреса	Чаимонорацию устройства		
SA3 SA2 SA1	Наименование устройства		
0 0 0	<i>К</i> —регистр первого операнда;		
0 0 1	<i>B</i> — регистр второго операнда;		
0 1 0	S — регистр кода операции;		
0 1 1	A — регистр адреса ячейки ОЗУ;		
1 0 0	R — сброс в «0» содержимого счётчика;		

1	0	1	У — разрешающий вход на запись в аккумулятор;
			$\overline{\overline{W}}$ — разрешение на запись в ОЗУ;
1	1	0	W— разрешение на считывание с ОЗУ (контроль по <i>HG1</i> с нажатием
			кнопки <i>SB</i> 2).

В таблице 3.1 приведены коды некоторых команд, выполняемых изучаемой микроЭВМ.

Пример решения типовой задачи по разработке алгоритма с использованием машинных кодов.

Задача 1. Операнду А присвоить значение 0000_2 и записать это число в аккумулятор, скопировать это число с аккумулятора в нулевую ячейку ОЗУ; содержимое аккумулятора ещё раз скопировать, но уже в регистр K, инвертировать это число и поместить в аккумулятор, затем в первую ячейку ОЗУ.

Решение.

Решение проведём по шагам.

- 1. Нажимая на кнопку *SB1* нужное число раз, ввести код операции «3₁₆» (при M = 1, $P_0 = 1$ см. таблицу 1 лабораторной работы №7), означающей «присвоить значение «0000₂» операнду, хранящемуся в регистре K». Контроль производить по $HG1 = 3_{16}$.
 - 2. Набрать переключателями 0102 код адреса регистра S (см. таблицу 1);
- 3. С нажатием кнопки *SB3* произойдёт присвоение нулевого значения операнду, хранящемуся в регистре K, т. е. K = 0. Контроль по HL4.
- 4. Переслать информацию из АЛУ в аккумулятор; для этого переключателями набрать адрес аккумулятора 101₂ (см. табл. 3.1).
- 5. Нажав на кнопку *SB*3, переслать информацию из АЛУ в аккумулятор. Контроль по *HL*7 и $HG = 0_{16}$.
 - 6. Кнопкой SB1 набрать адрес нулевой ячейки. Контроль $HG = 0_{16}$.
 - 7. Набрать переключателями SA3, SA2, SA1 0112 код адреса регистра A.
- 8. Нажатием кнопки *SB3* адрес нулевой ячейки будет зафиксирован в регистре А. Контроль по *HL5*.

- 9. Содержимое аккумулятора переслать в нулевую ячейку ОЗУ. Для этого переключателями набрать код 110₂, означающий адрес ОЗУ.
- 10. Нажатием кнопки *SB3* содержимое аккумулятора скопируется в нулевую ячейку. Контроль по *HL8*.
- 11. Содержимое аккумулятора поместить в регистр K. Для этого переключателями набрать 0000_2 код адреса регистра K.
- 12. С нажатием кнопки *SB3* содержимое аккумулятора скопируется в регистр К. Контроль по *HL2*.
- 13. Инвертировать число, содержащееся в регистре K. Для этого ввести код « O_{16} » (при M=1, $P_0=1$), нажимая на кнопку SB1. Контроль по HG1=0.
 - 14. Набрать переключателями 010₂ код адреса регистра S АЛУ.
- 15. С нажатием кнопки *SB3* АЛУ произведёт инвертирование содержимого регистра *К*. Контроль по *HL4*.
- 16. Кнопкой *SB*1 набрать «1₁₆» код адреса ячейки ОЗУ. Контроль по *HG* = 1₁₆.
 - 17. Переключателями 0112 код набрать код адреса регистра А.
- 18. Нажатием на кнопку *SB3* выбирается адрес первой ячейки ОЗУ. Контроль по *HL5*.
 - 19. Переключателями набрать 1012 код адреса аккумулятора.
- 20. С нажатием кнопки *SB3* в аккумулятор будет занесено содержимое АЛУ после операции инвертирования. Контроль по $HG1 = F_{16}$ и HL7.
 - 21. Переключателями набрать 1102 код адреса ОЗУ.
- 22. С нажатием кнопки *SB3* произойдёт запись содержимого аккумулятора в первую ячейку ОЗУ.

Проверка.

Проверку правильности составления алгоритма можно произвести путём считывания содержимого ячеек 0 и 1. Например, чтобы прочесть содержимое первой ячейки нужно кнопкой SB1 по индикатору *HG1* получить число «1₁₆», переключателями набрать 011₂ код адреса регистра А. Кнопкой *SB3* зафиксировать адрес первой ячейки в регистре А. Затем набрать 110₂ код адреса

накопителя ОЗУ; кнопкой *SB3* зафиксировать этот код в регистре *A* и, нажав на кнопку *SB2*, считать содержимое первой ячейки.

Ответ: в нулевой ячейке записано число 016, в первой ячейке — F_{16} .

V. Контрольные вопросы.

- 1. Какие функции выполняются устройствами АЛУ, ПЗУ, ОЗУ, УУ?
- 2. Какую функцию выполняет устройство на ИС Д2 схемы карты У1—2?
- 3. Какие функциональные признаки принадлежат регистрам общего назначения, отличающие их от регистров буферных?
- 4. Перечислите различные признаки между микроЭВМ изображённой на схеме карты 1У—2 и схемы рис. 3.1.
 - 5. Какие звенья входят в УУ?
- 6. Какую роль выполняют: счётчик команд, дешифратор команд, сигналы управления, шина данных?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Новикова, Н. В. Электрические и электронные компоненты устройств и систем. Лабораторный практикум : учебное пособие / Н. В. Новикова, В. О. Афонько. Минск : РИПО, 2022. 187 с. ISBN 978-985-895-043-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/334229.
- 2. Электрические и электронные компоненты устройств и систем. Лабораторный практикум: учебное пособие / В. В. Хорошко, С. М. Боровиков, А. А. Фещенко, Я. А. Соловьёв. БГУИР: БГУИР, 2023. 80 с. ISBN 978-985-543-672-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/479468

Учебное издание

Составители:

Судник Юрий Александрович Четвериков Евгений Александрович Шабаев Евгений Адимович Беленов Виталий Николаевич

«Электронные компоненты микропроцессорных устройств»

Методические указания

Издано в редакции составителей Корректура составителей Отпечатано с оригинала, предоставленного составителями

Подписано в печать .2025 г. Формат $60x84\ 1/16$ Усл. печ. л. . Уч.-изд. л. . Изд. № . Зак. .