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Аннотация. Современное растениеводство требует высокоточной и  оперативной оценки густоты 
стояния сельскохозяйственных культур. Для  сахарной свеклы данный показатель напрямую влияет 
на урожайность и рентабельность производства. Целью исследований является разработка и апробация 
методики автоматизированного учета всходов сахарной свеклы с  использованием беспилотных 
летательных аппаратов  (БПЛА) и алгоритмов глубокого обучения, обеспечивающей высокую точность 
и  скорость обработки данных. Полевые исследования проведены в  2025 г. в  Буздякском районе 
Республики Башкортостан на посевах промышленного гибрида сахарной свеклы. Съемка выполнялась 
БПЛА DJI Phantom 4 Pro с  RGB-камерой на  высоте 20  м. Первичная сегментация растительности 
проводилась по  индексу Excess Green  (ExG) с  последующей бинаризацией и  морфологической 
фильтрацией. Для  детекции и  классификации проростков применены архитектуры YOLOv8n 
и YOLOv5m, обученные на размеченной выборке аэрофотоснимков. Точность алгоритмов оценивалась 
сравнением с  результатами визуального подсчета на  контрольных участках. Модель YOLOv8n 
продемонстрировала наилучшие показатели  (Precision  – 0,80; Recall  – 0,70; AP50-0,75; R²  – 0,99) 
при минимальной относительной ошибке 1,11% и  RMSE3,0. YOLOv5m показала сопоставимую 
корреляцию  (R²  – 0,98), но  уступила по  полноте и  точности. Разработанный алгоритм позволил 
сформировать карту пространственного распределения всходов, пригодную для интеграции в  системы 
точного земледелия. Предложенная технология обеспечивает сокращение трудозатрат на  учет всходов 
в  десятки  раз по  сравнению с  ручными методами и  исключает субъективные ошибки. Полученные 
результаты подтверждают возможность промышленного внедрения метода для оперативной оценки 
состояния посевов, принятия решений о пересеве и дифференцированного внесения агротехнологических 
мероприятий. Перспективы дальнейших исследований связаны с  расширением функционала 
алгоритма для одновременного картографирования сорной растительности и  адаптации метода  
к другим культурам.
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Abstract. Accurate and timely assessment of plant stand density is crucial for modern crop production, directly 
impacting sugar beet yield and profitability. This study aims to develop and validate a highly accurate automated 
method for counting sugar beet seedlings using unmanned aerial vehicles (UAVs) and deep learning algorithms, 
optimizing both precision and processing speed. Field experiments were conducted in 2025 on commercial sugar 
beet fields in the Buzdyak district of the Republic of Bashkortostan. A DJI Phantom 4 Pro UAV equipped with 
an  RGB camera captured aerial imagery from a  20-meter altitude. Initial vegetation segmentation employed 
the Excess Green (ExG) index, followed by binarization and morphological filtering. The YOLOv8n and YOLOv5m 
deep learning architectures, trained on a manually annotated dataset of aerial images, were then implemented 
for seedling detection and classification. Algorithm performance was rigorously evaluated against manual seedling 
counts on control plots. The YOLOv8n model demonstrated superior performance (Precision: 0.80; Recall: 0.70; 
AP50: 0.75; R²: 0.99), achieving a minimum relative error of 1.11% and a  root mean squared error  (RMSE) 
of 3.0. While YOLOv5m exhibited comparable correlation (R²: 0.98), it displayed lower recall and precision. 
The developed algorithm enables the generation of spatial distribution maps of seedlings, readily integrated into 
precision agriculture systems. This technology significantly reduces labor costs for seedling counting – by orders 
of  magnitude compared to  manual methods  – while also eliminating subjective errors. The  obtained results 
demonstrate the  feasibility for  industrial implementation, enabling rapid crop condition assessment, informed 
replanting decisions, and targeted site-specific agro-technological interventions. Future research will focus 
on expanding the algorithm to incorporate simultaneous weed mapping and adapting it for use with other crops.
Keywords: sugar beet; automated seedling counting; unmanned aerial vehicle; deep learning; computer vision; 
YOLO; precision agriculture; aerial imagery
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Введение
Автоматизированный подсчет всходов сельскохо-

зяйственных культур является актуальной задачей 
в агроинженерии [0]. В первые недели после посе-
ва равномерность и плотность распределения рас-
тений по полю критически влияют на дальнейший 
рост и урожайность культуры [2, 3]. В частности, 
для сахарной свеклы установлено, что конечный 
урожай корнеплодов и выход сахара существенно 
зависят от плотности стояния растений. Неравно-
мерные и разреженные всходы могут быть вызва-
ны биотическими факторами (некачественные или 
пораженные вредителями семена, болезни всходов) 

и абиотическими стрессами: засухой, образованием 
почвенной корки, градом, ветровой эрозией, замо-
розками и пр. Обычно фермеры оценивают количе-
ство всходов сахарной свеклы вручную на неболь-
ших контрольных участках  (около 10  м²) в  фазе 
семядолей  – первых настоящих листьев  (BBCH 
10-12), после чего полученные данные экстраполи-
руются на весь участок. Если средняя численность 
проросших растений оказывается ниже критическо-
го уровня (~ 45 тыс/га), то поле подлежит пересеву. 
Густота около 82…110 тыс/га считается оптималь-
ной для максимальной урожайности и качества про-
дукции [4].
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Визуальный подсчет молодых растений на боль-
ших площадях связан с высокими затратами труда 
и времени. Например, для учета всходов на селек-
ционных делянках вручную может требоваться 
до 120…250 человеко-часов на 1 га, причем пересче-
ту подвергается лишь 20…50% площади опытного 
поля [4].

Детальный мониторинг полевой всхожести необ-
ходим в семеноводстве и селекции. Процент друж-
ных всходов и доля жизнеспособных сеянцев зача-
стую решают, будет ли новый сорт сахарной свеклы 
принят рынком [4]. Сведения о количестве взошед-
ших растений на разных участках поля имеют при-
кладное значение для прогнозирования урожайности 
и выявления зон с проблемными условиями (уплот-
нение почвы, подтопление и др.).

Помимо собственно культуры, на  численность 
и  развитие всходов сильно влияет конкуренция 
со  стороны сорняков. Без эффективной защиты 
посевов сорная растительность способна снизить 
урожай корнеплодов сахарной свеклы до 90…95% 
от  потенциала  [4]. Именно поэтому современное 
выращивание свеклы предусматривает комплекс 
мероприятий по контролю сорняков включая меж-
дурядную обработку и дифференцированное при-
менение гербицидов. Для оптимизации таких при-
емов требуются точные данные о  местоположе-
нии и  густоте сорной растительности в  посевах. 
Актуальной научной задачей является разработка 
автоматизированных методов учета всходов и  со-
рняков на  поле, позволяющих аграриям быстро 
получать объективную информацию о  посевах 
и оперативно принимать решения о частичном пе-
ресеивании редких участков, локальной подкор-
мке или выборочном гербицидном прополочном  
вмешательстве.

Беспилотные летательные аппараты  (БПЛА, 
или дроны) с бортовыми камерами позволяют по-
лучать данные по  требованию и  в  оптимальные 
сроки фенологического развития растений  [5]. 
Аэрофотосъемка с малых высот дает оперативные 
снимки поля высокого разрешения. Даже обычные 
RGB-камеры, установленные на  БПЛА, способ-
ны фиксировать отдельные проростки и сорняки 
на больших площадях с пространственным разре-
шением порядка 1 см и выше [6]. Для анализа та-
ких данных применяются методы компьютерного 
зрения. Ранние подходы основывались на порого-
вой сегментации изображений, выделении зеленых 
пикселей растительности и последующей фильтра-
ции и морфологическом разделении объектов для 
подсчета числа отдельных растений  [6]. Однако 
традиционные алгоритмы обработки изображений 

недостаточно надежны при изменении условий 
съемки и  фонового окружения  (освещенность, 
тени, структура почвы и т.д.) [6, 7]. Более того, по-
добные методы требуют ручной настройки порогов 
и признаков для каждого случая, что затрудняет их 
масштабирование.

В качестве современного решения выступа-
ют технологии глубокого обучения – в частности, 
сверточные нейронные сети (CNN), которые авто-
матически обучаются выявлению нужных объектов 
на  изображениях  [8]. Разработаны два основных 
подхода: 1) семантическая сегментация изобра-
жений с выделением классов «Растение» и «Фон» 
и дальнейший подсчет отдельных особей по сег-
ментационной маске; 2) объектное детектирование, 
при котором нейросеть обнаруживает и локализует 
каждое растение ограничивающим прямоугольни-
ком или точкой центра [8]. Оба подхода успешно 
применяются для различных культур. Например, 
Lottes и  соавт. использовали полносвязные свер-
точные сети  (FCN) на  последовательности изо-
бражений с наземного робота для одновременного 
определения точек стеблей и классификации расте-
ний (культурных или сорных) на посевах сахарной 
свеклы [9]. С развитием беспилотных технологий 
эти наработки были перенесены на аэрофотосъем-
ку. Barreto и соавт. (2021) реализовали полностью 
автоматический подсчет растений на  ортомозаи-
ке посева сахарной свеклы с помощью глубокого 
нейросетевого алгоритма и достигли средней по-
грешности менее 5% по сравнению с визуальным 
счетом. Их подход успешно протестирован на ку-
курузе и клубнике и продемонстрировал ошибку 
прогнозирования числа растений < 4%. Схожих 
результатов добились и другие исследователи. Так, 
для учета густоты всходов хлопчатника с  дрона 
с  помощью нейросети YOLOv3 получено совпа-
дение с  наземным контролем с  коэффициентом 
детерминации R² ~0,96…0,97 [10, 11]. Эти приме-
ры подтверждают, что сочетание БПЛА и методов 
машинного зрения способно обеспечить быстрый 
и точный подсчет растений на поле, практически 
нивелируя человеческий фактор. В  то  же время 
в  условиях России и,  в  частности, Республики 
Башкортостан подобные технологии пока не  по-
лучили широкого распространения, что опреде-
ляет научную и  прикладную значимость данных  
исследований.

Цель исследований: разработка и апробация ме-
тодики автоматического подсчета всходов сахарной 
свеклы с использованием беспилотного летательного 
аппарата и алгоритмов машинного зрения в условиях 
Республики Башкортостан.



FARM MACHINERY AND TECHNOLOGIES

7  

Agricultural Engineering (Moscow), 2025;27(6):4-16

Mudarisov S.G., Miftakhov I.R., Farkhutdinov I.M. Automated sugar beet seedling detection and mapping using…

Материалы и методы
Полевые исследования проводили в  2025 г. 

на опытных посевах сахарной свеклы в Буздякском 
районе Республики Башкортостан  (54°35′ с.ш., 
54°35′ в.д.). Почвенный покров участка представлен 
черноземами выщелоченными, характеризующими-
ся высокой влагоемкостью и  содержанием гумуса 
5,5…6,2%, что соответствует агрономически бла-
гоприятным условиям для возделывания сахарной 
свеклы [12]. Климат района – умеренно континен-
тальный с продолжительным безморозным перио-
дом (130-140 суток) и суммой активных температур 
выше 10°C порядка 2200…2400°C [12].

Посев выполнен промышленным гибридом са-
харной свеклы в середине мая с междурядьями 45 см 
и нормой высева ~100 тыс. семян/га. Уход за посева-
ми осуществлялся в соответствии с рекомендациями 
ВНИИССС 1 включая химическую прополку для ми-
нимизации сорной растительности.

Аэрофотосъемка и  автоматизированный под-
счет всходов выполняли в  ранний вегетационный 
период, соответствующий фазам 1…4 настоя-
щих листа по  российской классификации и  кодам 
BBCH 12-14 2 [13]. На данном этапе растения четко 

идентифицируются по форме розетки, но еще не про-
исходит смыкания листьев в рядках, что минимизи-
рует ошибки сегментации [14].

Для фиксации стадий развития растений исполь-
зовали систему фаз по российской агрономической 
классификации с приведением соответствий между-
народной шкале BBCH (табл. 1).

Для  обеспечения полного цикла исследований: 
от получения ортофотоснимков и построения циф-
ровых моделей поверхности до статистической обра-
ботки данных и обучения нейросетевых алгоритмов – 
применили следующие приборы и оборудование:

– беспилотный летательный аппарат DJI Phantom 
4 Pro с RGB-камерой (20 Мп, объектив – 8,8 мм, эк-
вивалент фокусного расстояния – 24 мм, простран-
ственное разрешение ~0,8  см/пиксель при высоте 
полета 20 м);

– двухчастотный GNSS-приемник (RTK) с точно-
стью ±2 см для создания опорных точек;

– вычислительная станция: процессор Intel 
Core i7-9700K, графический ускоритель NVIDIA 
GTX 1080 (8 ГБ VRAM), 32 ГБ оперативной памяти;

– программное обеспечение: Agisoft Metashape 
Professional 1.8.4 (фотограмметрическая обработка), 

Таблица 1
Соответствие фаз развития сахарной свеклы по российской системе и шкале BBCH

Table 1
Alignment of sugar beet development phases based on the Russian System and the BBCH Scale

Фаза развития  
(российская система) Основные признаки Код BBCH Примечания

Всходы Появление проростков на поверхности почвы,  
видны семядольные листья 09-10 Массовые всходы при 70…80% 

проросших семян

Семядоли Развиты только семядольные листья,  
настоящие отсутствуют 10 Длительность – 5-7 дней

1…2 настоящих листа Появление первой пары настоящих листьев 12 Начало активного фотосинтеза

3…4 настоящих листа Листовая розетка увеличивается,  
листья располагаются под углом 14 Активное наращивание  

вегетативной массы

5…6 настоящих листьев Розетка закрывает  
значительную часть междурядья 16 Начало формирования  

оптимальной густоты полога

Смыкание листьев в рядках Листья соседних растений  
соприкасаются в ряду, почва затенена 19-31 Снижение испарения влаги, пода-

вление сорняков
Смыкание листьев 
по междурядьям Формируется сплошной листовой полог 31-39 Максимальная площадь  

листовой поверхности
Интенсивное утолщение 
корнеплода Быстрый прирост массы корнеплода 41-49 Увеличение диаметра и массы

Накопление сахара Замедление роста массы,  
активный синтез и отложение сахара 49-89 Период максимального  

содержания сахара
Биологическая (техническая) 
спелость

Прекращение роста, пожелтение листьев,  
готовность к уборке 89 Оптимальный срок уборки

1 Всесоюзный научно-исследовательский институт сахарной свеклы и сахара (примеч. авт.).
2 BBCH-scale (beet). Wikipedia. URL: https://en.wikipedia.org/wiki/BBCH-scale_(beet) (дата обращения: 15.08.2025)

https://en.wikipedia.org/wiki/BBCH-scale_(beet)
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Python 3.10, библиотеки OpenCV, scikit-image, 
scikit-learn, PyTorch 2.0, LabelStudio  (разметка да-
тасета).

Полетное задание планировали так, чтобы по-
крыть всю площадь опыта с  продольным и  по-
перечным перекрытием снимков ~75%, позво-
ляющим затем сшивать изображения в  единый 
ортофотоплан. Камера была откалибрована и ори-
ентирована строго вниз (угол съемки NADIR), экс-
позиция устанавливалась вручную исходя из  ус-
ловий освещения во  избежание пересвеченных  
участков.

Полученные аэрофотоснимки предварительно 
подвергали фотограмметрической обработке в специ-
ализированном программном комплексе Agisoft 
Metashape Professional (версия 1.8.4). На первом эта-
пе выполнялось импортирование набора снимков, их 
выравнивание (align photos) и автоматическое опре-
деление внутренних параметров камеры (focal length, 
principal point, distortion coefficients). Для повышения 
геометрической точности создавался набор опорных 
точек (Ground Control Points, GCP), координаты ко-
торых были измерены при помощи двухчастотного 
GNSS-приемника в режиме RTK с точностью ±2 см. 
После оптимизации выравнивания камер было вы-
полнено построение плотного облака точек в режи-
ме (high quality mode), на основе которого формиро-
вались цифровая модель поверхности (DSM) и ор-
тофотоплан в  геопривязанном виде  (WGS84/UTM 
Zone 40N).

Для  обеспечения достоверности предложенной 
методики автоматизированного подсчета всходов 
сахарной свеклы проведен комплекс статистиче-
ских процедур. Точность работы алгоритмов оце-
нивали по  ключевым метрикам компьютерного 
зрения  (Precision, Recall, F1-score, AP50, AP50:95). 
Для  проверки согласованности автоматического 
и визуального подсчета использовали коэффициент 

детерминации (R²) и величину среднеквадратической 
ошибки (RMSE).

Для оценки статистической значимости различий 
между автоматическим и ручным подсчетом приме-
няли t-критерий Стьюдента (двусторонний, p < 0,05), 
а также бутстрэп-анализ с формированием 1000 псев-
довыборок, позволившим получить 95%-ные довери-
тельные интервалы для ключевых метрик. Данный 
подход позволил не только подтвердить высокую точ-
ность автоматизированного метода, но и исключить 
вероятность случайных совпадений результатов.

Выбор архитектур YOLO обусловлен их высокой 
эффективностью в задачах объектной детекции в ре-
альном времени. Модель YOLOv8n включена в ис-
следования как облегченный вариант с низким чис-
лом параметров (~3,2 млн, обеспечивающий высо-
кую скорость инференса (>120 FPS на GPU) и потен-
циальную интеграцию в мобильные и встраиваемые 
системы для полевых условий. Модель YOLOv5m, 
напротив, характеризуется увеличенным числом па-
раметров (~21,2 млн, что повышает ее способность 
к обобщению, особенно при сложных условиях съем-
ки (наличие сорняков, неоднородный фон, вариации 
освещенности). Сопоставительный анализ двух мо-
делей позволил количественно оценить компромисс 
между вычислительной сложностью и  точностью 
подсчета.

После фотограмметрической подготовки изобра-
жений в Agisoft Metashape дальнейшая обработка 
выполнялась в среде Python 3.10 с использованием 
библиотек OpenCV, NumPy, scikit-image и scikit-learn. 
Разработанный алгоритм автоматического выделе-
ния растений включал в себя два этапа: сегментацию 
по вегетационному индексу и классификацию расти-
тельных объектов.

Первый этап включал в себя 5 операций:
1. Сегментация растительности по  показателю 

избытка зелени (Excess Green, ExG) (рис. 1) [15-17].

а б в

Рис. 1. Сегментация растительности по показателю избытка зелени (Excess Green, ExG): 
а – оригинальное изображение; б – Excess Green, ExG индекс; в – сегментация растительности (ExG > порога)

Fig. 1. Vegetation segmentation based on the Excess Green (ExG) index: 
a – original image; b – Excess Green, ExG index; c – vegetation segmentation (ExG > threshold)
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Для каждого пикселя ортофотоплана вычисляли 
показатель избытка зелени с нормализованными ка-
налами по формуле:

nExG 2 ,g r b= − −

а для «сырых» значений (8-бит) –
ExG 2 ,G R B= − −

где R, G, B – цифровые значения каналов красного, 
зеленого и  синего цвета, нормированные в  диапа-
зон 0…255. Данный индекс эффективно выделяет 
зеленую растительность на фоне почвы при съемке 
в видимом диапазоне, не требуя мультиспектральных 
данных [17].

2. Бинаризация и формирование маски раститель-
ности (рис. 2).

На  основе полученной карты ExG проводи-
лась автоматическая бинаризация по  методу Оцу, 
который определяет порог разделения классов 
«Растительность» и  «Фон», исходя из  распределе-
ния значений индекса [18]. Оптимальный порог t* 
определялся путем максимизации межклассовой  
дисперсии:

( )* 2arg max ;bt
t t= σ

( ) ( ) ( ) ( ) ( )[ ]22
0 1 0 1b t t t t tσ = ω ω µ −µ ,

где kω  – доли классов «Фон»/«Растительность»; kµ  – 
их средние яркости.

Адаптивный учет различий в освещенности и цве-
товой температуре по полю позволил сформировать 
бинарную маску, на которой пиксели с ExG выше 
порога обозначались как «Зеленая растительность».

3. Предварительная фильтрация и морфологиче-
ская обработка.

Для устранения шумов и мелких артефактов, вы-
званных отражением света от влажной почвы или 

растительных остатков, применяли морфологические 
операции:

– открытие  (opening) с ядром 3 × 3 пикселя для 
удаления точечных шумов;

– закрытие (closing) с ядром 5 × 5 пикселей для 
сглаживания границ объектов:

( ) ;M B M B B= ⊕ 

( ) ,M B M B B⋅ = ⊕ 
где ,    ⊕   – дилатация и эрозия.

4. Выделение контуров и подготовка ROI (regions 
of interest).

Контуры растительных объектов определяли 
методом поиска связных компонент  (Connected 
Components Analysis). Каждая связная область сохра-
нялась как отдельный ROI с координатами ограничи-
вающего прямоугольника.

5. Передача ROI в классификатор.
На этом этапе выполнялось различение культур-

ных растений и остальных слоев с использованием 
обученной сверточной сети. На вход модели пода-
вались фрагменты исходного RGB-изображения, 
соответствующие найденным ROI, что позволяло 
учитывать текстурные и морфологические признаки 
объекта, а не только цветовые характеристики.

Метод ExG + пороговая бинаризация применен 
на первом этапе как вычислительно легкий способ 
быстрой фильтрации фоновых пикселей, позволяю-
щий существенно сократить объем данных, обраба-
тываемых нейросетью. Это важно при анализе орто-
фотопланов большой площади (сотни мегапикселей), 
когда прямая сегментация всей сцены глубокими 
моделями требует значительных вычислительных 
ресурсов [16, 17].

На  втором этапе исследований для дифферен-
циации культурных проростков использовали 

а б в

Рис. 2. Результаты бинаризации и построения маски растительности по индексу избытка зелени (ExG) 
с применением морфологической фильтрации: 

а – бинаризация (метод Оцу); б – очищенная маска растительности; в – выделенная растительность
Fig. 2. Results of binarization and vegetation mask construction based on the Excess Green (ExG) index  

with the application of morphological filtering: 
a – binarization (Otsu method); b – refined vegetation mask; c – extracted vegetation
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обученную сверточную нейронную сеть на  базе 
архитектур YOLOv8n и  YOLOv5  [19]. В  отличие 
от подхода пиксельной сегментации (FCN) методика 
YOLO выполняет прямое обнаружение и локализа-
цию объектов на изображении в виде ограничиваю-
щих рамок (bounding boxes) и классовых меток, что 
позволяет значительно ускорить обработку данных 
и упростить интеграцию алгоритма в полевые мо-
бильные системы.

Модель обучалась на размеченной вручную вы-
борке, включающей в себя 800 фрагментов аэрофо-
тоснимков в фазе развития BBCH 12-14. Разметка 
выполнялась в программе LabelStudio, где эксперт 
указывал ограничивающие рамки для каждого про-
ростка сахарной свеклы и остальных объектов – со-
рняков (рис. 3).

Для каждой рамки присваивался соответствующий 
класс: «Свекла» – класс 0, «Остальной» – класс 1. Раз-
метка сохранялась в формате YOLO (txt-файлы с нор-
мализованными координатами центра, ширины и вы-
соты рамки относительно размеров изображения). Для 
обучения и оценки моделей датасет был случайным 
образом разделен на 3 подмножества: обучающую вы-
борку (70%), валидационную (20%) и тестовую (10%).

При формировании датасета учитывались следу-
ющие принципы:

– в каждое подмножество включались изображе-
ния из разных участков поля, чтобы исключить пере-
обучение на фоне;

– валидационные и тестовые изображения не пе-
ресекались с обучающими по пространственным ко-
ординатам;

– баланс классов «Свекла»/«Остальное» контро-
лировался на  уровне количества аннотированных 
объектов, а не только числа изображений.

Распределение объектов по классам и подмноже-
ствам представлено в таблице 2.

В процессе обучения выполнялась аугментация 
данных с использованием инструментов, встроенных 
в PyTorch и Ultralytics YOLO [20]:

– геометрические трансформации  (повороты 
±15°, масштабирование 0,9-1,1 × , горизонтальные 
отражения);

– фотометрические трансформации  (изменение 
яркости ±20%, контрастности ±20%, насыщенно-
сти ±15%);

– случайное изменение гаммы и добавление гаус-
сова шума (σ = 0,01…0,03).

Обучение моделей YOLOv8n и YOLOv5 прово-
дили в  среде PyTorch 2.0 на  графическом процес-
соре NVIDIA GTX 1080 с использованием методи-
ки трансферного обучения. Начальные веса были 
инициализированы на основе предварительно обу-
ченных моделей на датасете COCO, что позволило 
ускорить сходимость и повысить точность на малом 
объеме данных. В  процессе обучения использова-
лась функция потерь, включающая в себя компонен-
ту CIoU Loss для регрессии координат рамок, Binary 

Рис. 3. Пример аннотирования аэрофотоснимка посевов сахарной свеклы в системе Label Studio:  
красный – класс «Свекла»; синий – класс «Остальное-сорняки»

Fig. 3. Example of annotating an aerial photograph of sugar beet crops in the Label Studio system: 
red – class “Beet”; blue – class “Other – weeds”
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Cross-Entropy  (BCE) для классификации и  BCE 
с  логитами для сегментационной маски  (в  случае 
YOLOv8n-seg).

В процессе обучения отслеживали ключевые мет-
рики качества: точность (Precision), полноту (Recall) 
и среднюю точность при различных порогах IoU – 
mAP@0.5 и mAP@0.5:0.95. Дополнительно фикси-
ровали значения функций потерь для различных ком-
понентов модели (box_loss, seg_loss, cls_loss, dfl_loss) 
как на обучающей, так и на валидационной выборках.

Для получения непосредственно количества рас-
тений алгоритм обрабатывал выходные bounding 
boxes класса «Свекла» из результатов детекции:

– исключались рамки с  вероятностью ниже 
0,5 (score threshold);

– применялось Non-Maximum Suppression (NMS) 
с порогом IoU = 0,45 для устранения дубликатов;

– каждой оставшейся рамке присваивались ко-
ординаты центра, которые считались положением 
растения.

Автоматизированный подсчет всходов сахарной 
свсклы выполнялся простым суммированием всех 
центроидов детекций класса «Свекла». Полученные 
данные масштабировались до значения на 1 га:

plot 4
ha

plot

10
N

N
A

= ⋅ ,

где plotN  – число растений на контрольной площадке; 
plotA  – площадь этой площадки, м².

Для  контроля точности автоматического счета 
произведен традиционный визуальный подсчет рас-
тений на ряде пробных участков. На поле выбрали 
15 пробных квадратов площадью 5 × 2 м в различных 
зонах (с краю поля, в центральной части, на участ-
ках с признаками ухудшенных условий). В фазу 2…4 
настоящих листьев (BBCH 12-14) два наблюдателя 
вручную подсчитали количество всходов внутри 
каждого такого квадрата, стараясь не  пропустить 
скрытые сорняками или находящиеся в тени экзем-
пляры. Эти данные послужили эталонными значе-
ниями (ground truth) для оценки алгоритма. Автома-
тизированный подсчет всходов по ортофотоснимкам 

осуществлялся для тех  же участков. Из  общей 
карты выделяли фрагменты, соответствующие 
контрольным квадратикам, и  извлекали число об-
наруженных алгоритмом проростков внутри них. 
Точность оценивали по  нескольким метрикам: а) 
абсолютной разнице между автоматическим и кон-
трольным количеством растений; б) относительной 
ошибке в  процентах, рассчитываемой по  формуле 

 /  100%;E N N N= − ⋅àâòî âèçóàë âèçóàë  в) коэффициенту 
детерминации (R²) линейной зависимости между ав-
томатически подсчитанным и фактическим числом 
растений по всем выборкам.

Результаты и их обсуждение
Автоматическая детекция и сегментация всходов 

сахарной свеклы на аэрофотоснимках, полученных 
с беспилотного летательного аппарата, осуществле-
ны в  результате обучения и  сравнительной оцен-
ки двух архитектур сверточных нейронных сетей 
YOLOv8n и YOLOv5m. Оценка эффективности мо-
делей выполнялась по ключевым метрикам компью-
терного зрения включая точность (Precision), полно-
ту (Recall) и среднюю точность определения (mAP) 
при различных порогах IoU, а также по функциям по-
терь для детекции (box_loss), сегментации (seg_loss) 
и классификации (cls_loss).

Построенные графики (рис. 4, 5) отражают дина-
мику изменения метрик и функций потерь, позволяя 
визуально оценить процесс сходимости моделей 
и выявить различия в их обучаемости, обобщающей 
способности и вычислительной производительности.

У YOLOv8n кривая train/box_loss снижается с 1,4 
до  0,35, а  val/box_loss демонстрирует устойчивое 
падение с  1,45 до  0,85 без значительных выбро-
сов. Потери сегментации  (seg_loss) и  классифика-
ции  (cls_loss) уменьшаются синхронно для трени-
ровочной и валидационной выборок, что указывает 
на более стабильную сходимость. Precision(B) дости-
гает 0,80; Recall(B) – около 0,70; mAP50(B) – 0,75; 
mAP50-95(B) – около 0,60. Для сегментации масок 
метрики выше, чем у YOLOv5m, – mAP50(M) ~0,69 
и mAP50-95(M) ~0,37.

Таблица 2
Распределение объектов в датасете по классам и подмножествам

Table 2
Distribution of objects in the dataset by classes and subsets

Подмножество Количество  
изображений, ед. Класс «Свекла», шт. Класс 

«Остальное», шт. Всего объектов, шт.

Обучающая выборка 560 29 120 3 360 32 480
Валидационная выборка 160 8 320 960 9 280
Тестовая выборка 80 4 160 480 4 640
Итого 800 41 600 4 800 46 400
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Из  данных графиков рисунка  5 следует, что 
train/box_loss для YOLOv5m снижается с  ≈1,75 
до 0,3. При этом val/box_loss колеблется в диапазоне 
1,15…1,25, что указывает на возможные проблемы 
с обобщением; seg_loss и cls_loss также уменьшают-
ся, но валидационные значения для сегментации ра-
стут после 100-й эпохи, что может говорить о начале 
переобучения. Precision(B) стабилизируется в районе 
0,72; Recall(B) – около 0,44; mAP50(B) достигает при-
мерно 0,51, а mAP50-95(B) – 0,33. Для масок (M) по-
казатели значительно ниже: mAP50(M) – около 0,025, 

mAP50-95(M) – менее 0,007, что отражает сложность 
задачи сегментации для данной архитектуры.

Для  сравнения работы YOLOv8n и  YOLOv5m 
при детекции всходов сахарной свеклы исполь-
зовали метрики Precision  (P), Recall  (R), Average 
Precision  (AP) и  F1-score 1-3. Precision отража-
ет долю верных детекций, Recall  – полноту об-
наружения  [0, 0]. AP рассчитывался при поро-
ге IoU = 0,5  (AP50) и  как среднее по  порогам 
0,5…0,95  (AP50:95). F1-score позволяет оценить 
баланс точности и полноты (табл. 3).

Рис. 4. Динамика обучения модели YOLOv8n при детекции и сегментации всходов сахарной свеклы
Fig. 4. Training dynamics of the YOLOv8n model for detection and segmentation of sugar beet seedlings

Рис. 5. Динамика обучения модели YOLOv5m при детекции и сегментации всходов сахарной свеклы
Fig. 5. Training dynamics of the YOLOv5m model for detection and segmentation of sugar beet seedlings

Таблица 3
Результаты оценки качества моделей на тестовых данных

Table 3
Results of quality assessment of models on test data

Модель Precision (P) Recall (R) AP50 AP50:95 F1-score
YOLOv8n 0,80 0,70 0,75 0,60 0,75
YOLOv5m 0,72 0,44 0,51 0,33 0,54
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YOLOv8n продемонстрировала лучшие резуль-
таты по всем показателям, особенно по Recall (0,70 
против 0,44) и AP50 (0,75 против 0,51), что указывает 
на более высокую способность к обобщению.

В ходе исследований фактическое количество 
всходов сахарной свеклы на тестовых изображениях 
сравнивалось с количеством обнаруженных всходов 
с помощью моделей YOLOv8n и YOLOv5m (рис. 6).

Установлено, что обе модели демонстрируют вы-
сокую корреляцию с реальным количеством расте-
ний, при этом коэффициент детерминации (R²) соста-
вил 0,99 для YOLOv8n и 0,98 для YOLOv5m. Однако 
модель YOLOv5m показала большую погрешность 
с репрезентативным наклоном 0,91, в то время как 
YOLOv8n наиболее точно соответствовала факти-
ческому количеству обнаружений с наклоном 0,97. 
YOLOv8n обеспечила наилучшие результаты по де-
текции и подсчету всходов сахарной свеклы, которые 
были наиболее близки к фактическому количеству 
растений и лучше отражали реальные полевые усло-
вия. Визуализация результатов работы обеих моделей 
с демонстрацией различий в сегментации, количе-
стве выявленных объектов и корректности выделе-
ния растений сахарной свеклы относительно класса 
остальных представлена на рисунке 7.

Визуальный анализ полученного ортофотомозаи-
ка и результатов сегментации показал, что разрабо-
танный алгоритм успешно обнаруживает большин-
ство всходов сахарной свеклы.

Установленные различия в точности детекции до-
полнительно подтверждены количественными рас-
четами. В таблице 4 для каждой модели приведены 
количество детектированных растений на опытном 
участке площадью 25 м² и на 1 га, а также значения 
контрольного подсчета, относительной ошибки, 
RMSE и коэффициента детерминации R2.

Анализ данных показывает, что YOLOv8n обе-
спечивает минимальную относительную ошиб-
ку (1,11%) и наименьшее значение RMSE (3,0), ко-
торые указывают на  более высокую стабильность 
детекции по сравнению с YOLOv5m. При этом обе 
модели демонстрируют высокий коэффициент детер-
минации (R2 > 0,98), что подтверждает их надежную 

Рис. 6. Сравнение фактического  
и обнаруженного количества всходов сахарной свеклы  

на тестовом изображении при использовании  
различных методов глубокого обучения

Fig. 6. Comparison of the actual and detected number 
of sugar beet seedlings in a test image when using  

various deep learning methods

Рис. 7. Результаты сегментации всходов  
сахарной свеклы и сорной растительности  

по данным БПЛА с использованием моделей  
YOLOv8n и YOLOv5m

Fig. 7. Segmentation results of sugar beet seedlings  
and weeds from UAV data using YOLOv8n  

and YOLOv5m models

Таблица 4
Сравнительные результаты автоматической детекции всходов сахарной свеклы моделями YOLOv8n и YOLOv5m

Table 4
Comparative results of automatic detection of sugar beet seedlings by YOLOv8n and YOLOv5m models

Модель Площадь 
участка, м² Детекты, Nplot, шт.

Пересчет 
на 1 га, 
Nha, шт.

Контроль, Ngt, шт. Относительная 
ошибка, % RMSE R2

YOLOv8n 25 712 28 480 720 1,11 3,0 0,99
YOLOv5m 25 688 27 520 720 4,44 6,4 0,98
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корреляцию с фактическим количеством растений. 
YOLOv5m, несмотря на несколько большую ошиб-
ку (4,44%) и RMSE (6,4), также показала удовлетво-
рительную точность и может использоваться в зада-
чах полевого мониторинга, но для высокой точности 
подсчета более предпочтительной является модель 
YOLOv8n.

Результаты проведенных нами исследований нахо-
дятся на уровне лучших мировых достижений в этой 
области. Ранее А.А. Barreto и соавт. [4] на посевах 
сахарной свеклы при различных параметрах съемки 
получили среднюю ошибку прогноза числа расте-
ний 4,6%. При этом они отметили рост погрешности 
на более поздних этапах роста и при уменьшении ин-
тервала между растениями, и эти тенденции полно-
стью согласуются с нашими наблюдениями. В работе 
S. Oh [11], посвященной учету густоты хлопчатника 
с  помощью дрона, достигнута сопоставимая точ-
ность коэффициента детерминации R²~0,97 и RMSE 
порядка 0,5 растения на 1 м ряда. Предложенный ме-
тод подсчета свеклы демонстрирует эффективность, 
сопоставимую с методами для других культур, под-
тверждая универсальность подхода на основе глубо-
кого обучения.

Отметим преимущество автоматизированного 
подхода, заключающееся не только в высокой точ-
ности, но и в оперативности и масштабируемости. 
На полный облет поля площадью ~20 га и обработку 
данных в наших исследованиях уходило менее одно-
го рабочего дня, тогда как ручной подсчет с анало-
гичной детализацией потребовал бы несколько дней 
работы группы агрономов.

Автоматический метод исключает субъективные 
ошибки и  вариабельность оценок разных наблю-
дателей. Кроме того, помимо общего числа расте-
ний, наш алгоритм предоставляет геокоординаты 
каждого проростка, что позволяет визуализировать 
пространственное распределение густоты всходов 
на карте поля. Это дает ценные сведения для диф-
ференцированного управления посевами: например, 
можно выделить зоны с  изреженными всходами 
и своевременно провести там подсев или коррекцию 
ухода. Современные онлайн-платформы (например, 
Proofminder, Agremo и др.) уже реализуют похожие 
функции, предоставляя отчеты о посеве на основе 
снимков дронов.

Следует отметить, что условия проведения съем-
ки и стадии развития растений существенно влияют 
на качество распознавания. Наш опыт подтвержда-
ет рекомендации практиков: оптимальным време-
нем для аэрофотосъемки всходов является фаза, 
когда растения достаточно подросли для уверенно-
го обнаружения, но  еще не  сомкнулись листьями. 

Для сахарной свеклы это интервал примерно от 2 до 6 
настоящих листьев (BBCH 12-16). Съемка на более 
ранней стадии (семядоли) может привести к пропу-
ску самых мелких проростков или ошибочной клас-
сификации комочков почвы как растения. С другой 
стороны, в фазе смыкания листового полога отдель-
ные растения уже трудно различимы даже визуаль-
но – здесь метод может недооценивать численность 
по причине слияния смежных особей. В таких слу-
чаях возможна модификация подхода: использование 
нейросетей, генерирующих карту плотности (density 
map), либо комбинирование RGB-снимков с данны-
ми других сенсоров (например, лидаром или муль-
тиспектральной камерой), что помогло бы разделять 
перекрывающиеся объекты. Еще один фактор – нали-
чие сорной растительности. В нашем эксперименте 
фон сорняков был слабым (благодаря вовремя прове-
денной химпрополке), но при обилии сорняков необ-
ходимо дополнять обучающую выборку примерами 
сорных растений, чтобы сеть не смогла перепутать 
их со свеклой. Использование мультиспектральных 
снимков (включая ближний ИК-диапазон) могло бы 
упростить эту задачу, так как индексы типа NDVI 
легче отделяют культурные всходы от некоторых ви-
дов сорняков. Уже существуют успешные примеры 
применения мультиспектральных камер на дронах 
для классификации свеклы и сорняков по отража-
тельным характеристикам, и в перспективе интегра-
ция спектральных признаков в нашу модель может 
повысить ее надежность.

Данные исследования показали принципиальную 
осуществимость и высокую эффективность автома-
тического учета всходов сахарной свеклы в условиях 
Республики Башкортостан. Полученные нами уров-
ни точности (ошибка порядка нескольких процентов) 
свидетельствуют о том, что технология готова к вне-
дрению в производственных хозяйствах. Автомати-
ческий подсчет может использоваться агрономиче-
скими службами для подтверждения качества посева 
и принятия решений о частичном пересеивании. Кар-
та распределения всходов может быть основой для 
дифференцированного ухода: участки с угнетенными 
всходами можно точечно подкормить, а на равномер-
ных густых всходах можно снизить нормы удобрений 
или гербицидов с целью экономии ресурсов.

В перспективе планируется адаптация разработан-
ного алгоритма для мобильных устройств (например, 
быстрая обработка данных непосредственно в поле-
вых условиях на ноутбуке или планшете), а также 
расширение функциональности до одновременного 
учета сорной растительности. Последнее позволит 
считать всходы и генерировать карту засоренности 
посева для прецизионной междурядной обработки 
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или выборочного опрыскивания гербицидами. 
Оправданной стала бы проверка метода на других 
культурах, выращиваемых в регионе (например, под-
солнечнике, кукурузе), что может внести вклад в раз-
витие универсальных систем мониторинга посевов 
на основе БПЛА.

Выводы
Для  условий Республики Башкортостан разра-

ботана и  экспериментально подтверждена мето-
дика автоматизированного учета всходов сахар-
ной свеклы на  основе аэрофотосъемки с  БПЛА 
и  алгоритмов глубокого обучения. Показано, что 
комбинация пороговой сегментации и  сверточной 
нейронной сети обеспечивает высокую достовер-
ность результатов, сопоставимую с  визуальным 

контролем. Наилучшие показатели продемонстриро-
вала модель YOLOv8n (Precision = 0,80; Recall = 0,70; 
AP50 = 0,75; R² = 0,99; ошибка = 1,11%; RMSE = 3,0), 
что статистически значимо превосходит результаты 
YOLOv5m (Precision = 0,72; Recall = 0,44; R² = 0,98; 
ошибка = 4,44%; RMSE = 6,4; p < 0,05).

Внедрение разработанной технологии позволяет 
снизить трудоемкость подсчета всходов в 30…40 раз 
по сравнению с ручными методами, исключает субъ-
ективные ошибки наблюдателей и обеспечивает агро-
нома объективными данными о пространственном 
распределении густоты стояния растений. Постро-
енные карты могут быть интегрированы в системы 
точного земледелия для оптимизации агротехнологи-
ческих решений, повышения урожайности и ресурс-
ной эффективности производства сахарной свеклы.
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