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Аннотация. Высококачественные исследования в области агроинженерии требуют точного подхода к контролю 
параметров микроклимата в фитотроне, особенно температуры. Распределение температуры при различных 
режимах работы фитотрона требует дополнительного научного исследования. В основе разрабатываемого 
устройства лежит техническое решение раздельного нагрева растений и их корневой системы за счет разделения 
объема воздуха на камеру выращивания растений и камеру нагрева почвы. Целью исследований является 
получение уравнений температурного распределения воздушных масс в фитотроне с учетом конвективного 
теплообмена в камерах выращивания растений и нагрева почвы. Среди рассмотренных методов моделирования, 
подходящих для решения данной задачи, выбран метод разделения переменных. Для  математического 
моделирования температурного поля в камере фитотрона применили аналитический метод решения уравнений 
конвективного теплообмена, основанный на уравнении Навье-Стокса. В ходе теоретического исследования 
разработали математические модели температурных полей в камерах фитотрона, которые демонстрируют 
отклонение от  средней температуры менее 5%, что достаточно для точного создания контролируемого 
микроклимата. В  дальнейшем математические модели будут проверены методами компьютерного 
моделирования и натурными испытаниями на экспериментальной установке с учетом агротехнологических 
требований. Результаты расчета могут быть использованы при проектировании систем автоматического 
управления нагревательными элементами и вентиляции фитотронов различных типоразмеров.
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Abstract. Precise control of microclimate parameters within phytotrons, particularly temperature, is crucial for high-
quality agricultural engineering research. Optimizing temperature distribution under diverse phytotron operating 
conditions necessitates further investigation. This study focuses on a novel phytotron design featuring separate heating 
of plants and their root systems by partitioning the air volume into distinct plant growth and soil heating chambers. 
The  study aimed to  derive equations describing air temperature distribution within the  phytotron, considering 
convective heat exchange in both the plant growth and soil heating zones. Among candidate modeling techniques, 
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the  method of  separation of  variables was selected for  its suitability. An  analytical approach, based on  solving 
convective heat transfer equations derived from the  Navier-Stokes equations, was employed to  mathematically 
model the temperature field within the phytotron chambers. The theoretical analysis resulted in the development 
of mathematical models predicting temperature fields in the phytotron chambers with a maximum deviation of less than 
5% from the average temperature. This level of accuracy is deemed sufficient for precise microclimate control. These 
mathematical models will be subsequently validated through computer simulations and field testing on an experimental 
phytotron, taking into account agricultural technology requirements. The resulting calculation results can be applied 
to the design of automatic control systems for heating elements and ventilation within phytotrons of varying sizes.
Keywords: phytotron; microclimate; temperature field; mathematical model; mathematical models of temperature 
fields; method for solving convective heat transfer equations
For  citation: Dorodov P.V., Gusennikov E.N., Yuran S.I., Shirobokova T.A., Pospelova I.G. Mathematical 
model of the temperature field of convective heat exchange in a phytotron. Agricultural Engineering (Moscow). 
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Введение
Фитотрон – это климатическая камера, предназна-

ченная для точного создания и поддержания условий 
микроклимата для растений. Одним из  ключевых 
факторов микроклимата, влияющих на  жизнедея-
тельность растений, является температура листвы 
и  корней растений  [1, 2]. Следовательно, работа 
фитотрона подразумевает точное контролирование 
температуры воздуха внутри рабочего пространства 
установки. Указанные возможности фитотронов, 
помимо обеспечения повышения показателей роста 
растений, целесообразно использовать в  различ-
ных агрономических исследованиях  – например, 
при определении режимов термотерапии растений, 
исследовании влияния повышенной температуры 
на растения и др. [3, 4].

В современных исследованиях отсутствуют гото-
вые математические модели, описывающие распре-
деление температурных полей в фитотронах. В то же 
время для проведения агрономических исследований 
требуется четкое представление о  распределении 
температуры внутри рабочего пространства фитотро-
нов различных конструкций. В связи с этим разра-
ботка универсального метода определения темпера-
турного поля внутри фитотрона является актуальной 
задачей 1 [5].

Можно ожидать, что математическое моделиро-
вание температурного поля в разрабатываемом фи-
тотроне, содержащем камеру выращивания растений 
и камеру нагрева почвы, позволит более точно про-
гнозировать работу системы обогрева и оптимизиро-
вать настройки климатических систем для улучше-
ния условий роста растений.

1 Гусенников Е.Н. Система контролируемого выращи-
вания растений для бытового применения // Новые на-
правления развития приборостроения. 2024: Материалы 
17-й Международной научно-технической конференции мо-
лодых ученых и студентов. Минск, 2024. С. 73.

Цель исследований: получить уравнения распре-
деления температурного поля в камерах выращива-
ния растений и нагрева почвы в рамках разрабатыва-
емой конструкции фитотрона.

Материалы и методы
Моделирование температурного поля в  камере 

фитотрона при конвективном теплообмене требует 
применения различных аналитических методов, ко-
торые позволяют учитывать множество факторов, 
влияющих на теплоперенос.

Для решения дифференциальных уравнений те-
плообмена при использовании ряда допущений при-
меняется метод разделения переменных. Преимуще-
ством данного метода является получение точного 
решения в виде функции температуры от простран-
ственных координат, что позволяет затем исследовать 
ее на экстремум и определять оптимальные параме-
тры температурного поля.

Метод конечных элементов (МКЭ) – один из самых 
распространенных численных методов для решения 
дифференциальных уравнений теплообмена, особен-
но при наличии сложной геометрии объекта исследо-
вания и неоднородных материалов  [6]. В контексте 
моделирования температурного поля в камере фито-
трона МКЭ позволяет точно учитывать геометричес-
кие особенности фитотрона, разнообразие теплофизи-
ческих свойств материалов (стенки, растения, воздух), 
сложные граничные условия – такие, как теплопере-
дача через вентиляторы и стенки камеры. Несмотря 
на высокую точность решения метода, его главным 
недостатком является необходимость значительных 
вычислительных ресурсов при моделировании круп-
ных областей и сложность проектирования модели.

Метод конечных разностей (МКР) – другой чис-
ленный метод, в  котором происходит дискретиза-
ция пространства и  времени на  равномерные сет-
ки  [7]. В  свою очередь, дифференциальные урав-
нения заменяются разностными выражениями. 
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Для моделирования теплообмена в камере фитотро-
на этот метод используется при решении уравнения 
теплопроводности и  уравнений Навье-Стокса для 
потока воздуха. МКР особенно эффективен в случае 
моделирования временных процессов – таких, как 
изменение температуры в фитотроне с течением вре-
мени. Преимуществом данного метода является про-
стота реализации для систем с простой геометрией, 
однако при исследовании объемных объектов слож-
ной формы трудно добиться достаточной точности.

Методы статистического моделирования приме-
няются в случаях, когда требуется учитывать неопре-
деленности – такие, как изменение внешних условий 
или нестабильность потока воздуха. При этом могут 
быть использованы стохастические модели [8]. Эти 
методы моделируют систему как случайный процесс 
и позволяют анализировать распределение темпера-
туры в фитотроне с учетом вероятностных факторов. 
Несмотря на возможность моделирования системы 
с переменными внешними условиями, такой метод 
подразумевает большой объем вычислений.

Методы численного моделирования (CFD) жид-
костных потоков применяются для анализа сложных 
динамических процессов теплообмена [9]. Данные 
методы подразумевают использование программ-
ного обеспечения: COMSOL Multiphysics, ANSYS 
Fluent, OpenFOAM и др. CFD позволяет учитывать 
все взаимосвязанные процессы: теплообмен через 
стены, вентиляцию, турбулентность и даже взаимо-
действие с растениями. Преимуществами метода яв-
ляются высокая точность в моделировании сложных 
потоков воздуха и теплообмена, удобная интеграция 
с другими физическими моделями (механика, химия) 
и возможность проведения полностью компьютерно-
го моделирования на основе готовых математических 
уравнений. Но при этом имеются значительные не-
достатки: высокие требования к  вычислительным 
мощностям, большие объемы результатов модели-
рования, возможность проведения только итераци-
онного моделирования, дискретное моделирование 
с указанным интервалом, от размера которого зави-
сят сложность и точность вычислений, возможность 
ошибок при длительном моделировании, и главное – 
отсутствие итогового уравнения зависимости иссле-
дуемой величины моделируемого процесса от факто-
ров, участвующих в моделировании.

На первоначальном этапе теоретического иссле-
дования температурного поля камер фитотрона при-
менен аналитический метод разделения переменных 
дифференциального уравнения энергии воздушного 
потока, так как он позволяет получить выражение не-
прерывного поля для проведения дальнейших анали-
тических исследований.

Объектом исследований является разрабатывае-
мый фитотрон, в основе которого лежит предложен-
ное техническое решение раздельного нагрева расте-
ний и их корневой системы за счет разделения объе-
ма воздуха на две камеры: 1 – камера нагрева почвы; 
2 – камера выращивания растений [10] (рис. 1).

Корпус фитотрона имеет сверху и снизу отвер-
стия, соединяющие камеры с окружающей средой. 
Рабочий объем фитотрона разделен пластиной с от-
верстиями для прохода теплого воздуха из камеры 1 
в камеру 2. В нижней камере нагрева почвы нахо-
дятся пластинчатый электронагреватель и непосред-
ственно горшки с почвой. Сверху верхней камеры 
выращивания растений располагается проветриваю-
щий вентилятор.

Результаты и их обсуждение
Для  математического моделирования темпе-

ратурного поля в  камере фитотрона используется 
аналитический метод решения уравнений конвек-
тивного теплообмена, основанный на  уравнении 
Навье-Стокса 2, 3 [11, 12]. Для описания потока возду-
ха применяется модель конвективного тепломассо-
переноса.

Поскольку концепция разрабатываемого фи-
тотрона предполагает использование устройства 

2 Темам Р. Уравнения Навье-Стокса. Теория и численный 
анализ. 2-е изд. М.: Мир, 1981. 408 с.

3 Ландау Л.Д., Лифшиц Е.М. Гидродинамика. Теорети
ческая физика. 4-е изд. М.: Наука, 1988. Т. VI. 736 с.

Рис. 1. Трехмерная модель фитотрона (вид сбоку)
Fig. 1. 3D model of a phytotron (side view)
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в помещении и стенки выполняются с применением 
теплоизолятора, то в данной модели теплопроводи-
мостью корпуса можно пренебречь. Тогда уравнение 
энергии воздушного потока имеет вид 4:

( ) ( )2 ,T v grad T a T∂
+ ⋅ = ⋅∇

∂τ ò



где T – температура воздушного потока, К; τ – время, 
с; v – скорость воздушных масс, м/с; aт – коэффици-
ент теплопроводности воздушных масс, м2/с.

Или в декартовой системе координат x, y и z:

	 2 2 2

2 2 2 ,

x y z
T T T Tv v v

x y z
T T Ta

x y z

∂ ∂ ∂ ∂
+ ⋅ + ⋅ + ⋅ =

∂τ ∂ ∂ ∂

∂ ∂ ∂ = ⋅ + + ∂ ∂ ∂ 
ò

� (1)

где vx, vy и vz – проекции скорости воздушных масс 
на координатные оси, м/с.

При  установившемся режиме  (∂T/∂τ = 0) и  для 
среднего сечения камер фитотрона из условий сим-
метрии (∂T/∂z = 0) уравнение (1) примет вид:

	
2 2

2 2 .x y
T T T Tv v a
x y x y

∂ ∂ ∂ ∂ ⋅ + ⋅ = ⋅ + ∂ ∂ ∂ ∂ 
ò � (2)

Для исследования температурного поля зададимся 
значением температуры в реперных точках камеры 
фитотрона, изображенных на рисунке 2.

Внутри камеры 1 расположены реперные точки 
T10…T14, а в камере 2 – точки T20…T24. Рассмотрим их 
температурное поле по отдельности.

Температурное поле в камере 2. Из условий сим-
метрии кинематического процесса тепломассопере-
носа можно рассматривать только левую половину 
срединного сечения камеры выращивания расте-
ний  2. Пусть линии уровня температурного поля 
в камере 2 имеют вид, представленный на рисунке 3, 
где температурные реперные точки Т20…T24 распола-
гаются только в левой половине камеры. За начало 
отсчета системы координат x, y выбрана реперная 
точка со значением температуры Т20.

Правая часть уравнения  (2) представляет собой 
теплообмен за  счет теплопроводности воздушно-
го потока. При отсутствии внутренних источников 
тепла этой частью уравнения можно пренебречь,  
тогда имеем:

	 2 2 0x y
T T
x y

∂ ∂
⋅ + ⋅ =
∂ ∂

  � (3)

или

	 ( )2 2, 0,T Tf x y
x y

∂ ∂
+ ⋅ =

∂ ∂
′ � (4)

4 Григорьев Б.А., Цветков Ф.Ф. Тепломассообмен: Учебник. 
М.: МЭИ, 2011. 562 с.

где

( )
'

'

/, .
/

y y

x x

fy yf x y
x x f

′ ∂ ∂τ ∂
= = = =

∂ ∂τ ∂




Здесь y(x) = f (x, y) – траектория движения воздуш-
ных потоков.

Пусть траектория движения воздушного потока 
описывается уравнением второго порядка во вспо-
могательной прямоугольной декартовой системе ко-
ординат x1, y1, тогда

( )1 1, 0,f x y =

Рис. 2. Схема фитотрона с реперными точками 
температурного поля

Fig. 2. Phytotron diagram with reference points 
of the temperature field

Рис. 3. Линии уровня температурного поля 
в камере 2: 

2a и 2b – полуширина и высота камеры 2
Fig. 3. Temperature field level lines in chamber 2: 

2a and 2b – half-width and height of chamber 2
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где
( )

 

2 2
1 1 1 1 1 1 1 1 1

' '
1 1 1 1 1

, 2
2 2 .

f x y A x B y E x y
A x B y C

= + +

+ +

+

+
Путем поворота и сдвига системы координат ее 

можно привести к виду:
( ) 2 2, .f x y Ax By C= + +

Тогда
' '2 ,  2 ,  ,x y

A xf A x f B y f
B y
⋅

= ⋅ = ′⋅ =
⋅

а уравнение (4) примет вид:

	 0. T Ax T
x By y

∂ ∂
+ =

∂ ∂
� (5)

Для решения уравнения (5) воспользуемся мето-
дом разделения переменных:

( ) ( );T U x V y= ⋅  

;

.

T dUV
x dx
T dVU
y dy

∂
=

∂
∂

=
∂

Тогда уравнение (5) запишется как

0,dU A x dVV U
dx B y dy

⋅
+ ⋅ =

⋅
откуда имеем:

	
;

.

dU A x U
dx B
dV V
ydy

⋅ = ⋅

 =


� (6)

После интегрирования системы (6) получим:
2

2

2
1

2
2

,

,  

A x
B

y

U k e

V k e

⋅

= ⋅

= ⋅
а решение примет вид:

	 ( )
2 2

2 2
2 32 2

1 1 ,
A x y

C x C yBT U V C e C e
 ⋅

+  ⋅ + ⋅ = ⋅ = ⋅ = ⋅ � (7)
где Ci – константы, определяемые граничными усло-
виями (рис. 3):

( )
( )
( )
( )
( )

20

21

23

22

24

1) 0;0 ;   
2) ;0 ;   
 3) ;0 ;
4) 0; ;   
 5) 0; ,

T T
T a T
T a T
T b T
T b T

=
 =
 − =
 =
 − =

где T20…T24 – значения температур в реперных точках 
камеры 2 (рис. 3), К; a – полуширина половины каме-
ры, м; b – полувысота половины камеры, м.

Поскольку количество граничных условий избы-
точно, то в некоторых точках значение температуры 
будет совпадать, чего можно добиться техническими 
методами  (автоматическим управлением вынуж-
денной конвекцией, термоизоляцией стенок камеры 
и др.). Тогда имеем:

 

1 20

21
2 2

20

23
2 2

20

22
3 2

20

24
3 2

20

1) ,
12) ln ,

13) ln ,

14) ln ,

15) ln ,

C T
TC

a T
TC

a T
TC

b T
TC

b T

=
  = ⋅  

 
  = ⋅  

 
  = ⋅  

 
  = ⋅  
  

откуда T21 = T23 и T22 = T24, а решение имеет вид:

( ) ( )2 2
21 22

20 20
ln ln

20 .
T Tx y
T a T bT T e

    ⋅ + ⋅    
    = ⋅

Данное уравнение можно также выразить в виде 
безразмерных величин:

( ) ( )2 2
21 22

20 20
ln ln

20

,
T Tx y
T a T bT e

T

    ⋅ + ⋅    
    θ = =

где θ – функция температурного поля в камере выра-
щивания растений 2.

Построим трехмерный график температурного 
поля в безразмерных величинах для камеры 2. Для по-
строения графика зададимся следующими параметра-
ми расчета: b/а = 1,38  (из  конструкции прототипа); 
T21/T20 = 0,93 и T22/T20 = 0,98 (из агротехнических тре-
бований). Для построения графика применили про-
граммное обеспечение Maple. График температурного 
поля θ и его линии уровня показаны на рисунке 4.

Полученное поле распределения температуры 
в камере 2 имеет форму холма с пиковым значением 
в центре полуобъема камеры. Неравномерность на-
грева камеры составила 0,66% ≪ 5%.

Температурное поле в камере 1. Камера нагрева 
почвы имеет внутренний источник тепла – электро-
нагреватель. На рисунке 5 представлена схема сре-
динного сечения камеры нагрева почвы с реперными 
точками T10…T14.

Поскольку в данной камере имеется нагреватель-
ный элемент, то уравнение (3) запишется с учетом 
источника тепла q. Уравнение энергии для камеры 1 
становится неоднородным:

	 ( ),x y
T T q y
x y

∂ ∂
⋅ + ⋅ =
∂ ∂

  � (8)

где q(y) – интенсивность источника тепла (из условий 
симметрии q зависит только от координаты y), К/с.
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Полное решение уравнения (8) определяется вы-
ражением:

* **,T T T= +

где T * – общее решение однородного уравнения,

	
* *

0,x y
T T
x y

∂ ∂
⋅ + ⋅ =
∂ ∂

  � (9)

T **  – частное решение уравнения  (8), зависящее 
от вида функции q(y).

Общее решение однородного уравнения (9) имеет 
вид (см. (7)):

( )2 2
2 3*

1 .C x C yT C e ⋅ + ⋅= ⋅

Функция q(y) может быть получена либо из экспе-
риментальных данных, либо основана на обоснован-
ных теоретических предположениях. Большинство 
естественных процессов, которые протекают моно-
тонно (не периодически), подчиняется экспоненци-
альным законам:

~ ,const yq e ⋅

тогда частное решение T ** запишется как
4**

1 .C yT C e ⋅= ⋅
А полное решение примет вид:

	 ( )2 2
2 3 4

1 .C x C y C yT C e ⋅ + ⋅ + ⋅= ⋅ � (10)
Постоянные C1…C4 определяются из граничных 

условий (рис. 5):

	

( )
( )
( )
( )
( )

10

11

13

12

14

1) 0;0  ,
2) ;0 ,
3) ;0
4) 0; ,
5) 0;

,

,

T T
T a T
T a T
T b T
T b T

=
 = − =
 =
 − =

� (11)

где T10…T14 – значения температуры в реперных точ-
ках камеры нагрева почвы 1 (рис. 5), К; a – полуши-
рина камеры 1, м; b – полувысота камеры 1, м.

Из граничного условия 1) системы (11)
( )1 100;0 .C T T= =

Из условия 2) следует, что
( )

2
2

11 10;0 ,C aT a T T e ⋅= = ⋅

а� б
Рис. 4. График температурного поля в камере 2 при b/а = 1,38, T21/T20 = 0,93, T22/T20 = 0,98: 

a) распределение температуры в срединном сечении левой половины; б) линии уровня температурного поля
Fig. 4. Temperature field graph in chamber 2 at b/а = 1.38, T21/T20 = 0.93, T22/T20 = 0.98: 

a) temperature distribution in the middle section of the left half; б) temperature field level lines

Рис. 5. Схема срединного сечения  
камеры нагрева почвы:  

a и b – полуширина и полувысота камеры 1
Fig. 5. Diagram of the middle section  

of the soil heating chamber:  
a and b – half-width and half-height of chamber 1
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откуда
11

2 2
10

1 ln .TC
a T

 = ⋅  
 

Из условия 3) получим:

13
2 2

10

1 ln ,TC
a T

 = ⋅  
 

то есть T11 = T13.
Четвертое граничное условие запишется как

	 ( ) ( )2
3 4

10 120; ,C b C bT b T e T⋅ + ⋅= ⋅ = � (12)
а пятое условие – как

	 ( ) ( )2
3 4

10 140; .C b C bT b T e T⋅ − ⋅− = ⋅ = � (13)
Из (12) и (13) имеем:

12 14
3 2

10

1 ln ;T TC
b T

 ⋅ 
= ⋅  

 
 12

4
14

1 ln .TC
b T

 
= ⋅  

 
Подставим постоянные С1…С4 в уравнение (10) 

и получим

( ) ( )2 2
11 1212 14

10 10 14
ln ln ln

10

T Tx T T y y
T a T b T bT T e

  ⋅  ⋅ + ⋅ + ⋅    
      = ⋅

или в виде безразмерных величин:

( ) ( )2 2
11 1212 14

10 10 14
ln ln ln

10

,
T Tx T T y y
T a T b T bT e

T

  ⋅  ⋅ + ⋅ + ⋅    
      θ = =

где θ – функция температурного поля в камере нагре-
ва почвы 1.

Для  построения графика зададимся следующи-
ми параметрами расчета: b/а = 0,47  (из  конструк-
ции прототипа); T11/T10 = 0,73;  (T12 ∙ T14)

0,5/T10 = 1,03 
и  T12/T14 = 0,87  (из  агротехнических требований). 
График температурного поля θ, построенный с ис-
пользованием программного обеспечения Maple, 
представлен на рисунке 6.

Полученное поле распределения температуры 
в камере 1 имеет седловидную форму с максимумом 
в месте расположения нагревателя. Неравномерность 
нагрева камеры составила 2,51% < 5%, что вполне 
достаточно для контроля температурного режима 
в камерах фитотрона.

Гипотеза подтверждена: математические модели 
температурных полей в камерах фитотрона позволя-
ют создать контролируемый микроклимат.

а� б
Рис. 6. График температурного поля в камере 1 при b/а = 0,47, T11/T10 = 0,73 (T12 ∙ T14)

0,5/T10 = 1,03, T12/T14 = 0,87: 
a) распределение температуры в срединном сечении; б) линии уровня температурного поля

Fig. 6. Temperature field graph in chamber 1 at b/а = 0.47, T11/T10 = 0.73, (T12 ∙ T14)
0,5/T10 = 1.03, T12/T14 = 0.87: 

a) temperature distribution in the middle section; б) temperature field level lines

Выводы
1. Разработанные математические модели темпе-

ратурных полей в камерах фитотрона демонстриру-
ют отклонение от средней температуры менее 5%, 
что достаточно для точного создания контролиру-
емого микроклимата. В дальнейшем модели будут 
проверены численными методами компьютерного 

моделирования и натурными испытаниями на экспе-
риментальной установке с учетом агротехнологиче-
ских требований.

2. Результаты расчета могут быть использованы 
при проектировании систем автоматического управ-
ления нагревательными элементами и  вентиляции 
фитотронов различных типоразмеров.
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